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PROJECT SUMMARY 

 

InView, in partnership with Rice University, completed a two-year Phase II plan whose 

objectives defined the development of a compressive sensing-based high-speed detection and 

tracking sensor.  The Phase II work was built on the unique “single-pixel camera”  architecture 

and algorithms invented at Rice University and developed commercially by InView Technology 

Corporation.  In this architecture the compressive sensing sampling strategy is implemented 

optically using a high-resolution spatial light modulator that encodes the scene to be imaged with 

a set of patterns mathematically constructed to exploit redundancy in the structure of the scene to 

reduce the number of measurements required for faithful reconstruction.  While randomized 

patterns are effective in general imaging tasks, we show that patterns developed based on 

selected components of the Hadamard spectrum—that is, the Partial Complete strategy-- can be 

used for anomaly detection and have the advantage of requiring many fewer measurements than 

required for imaging, enabling high-speed operation. This final report summarizes our approach 

and achievement of five main program objectives: 

 
1:  Development of lab metrics and accurate targets for change detection system testing 

2:  Optimizing Real Time Anomaly Detection  

3:  Development and implementation of Multiplexed Spatial-Spectral Hybrid Subspace sampling patterns 

for high-speed scenario specific anomaly detection  

4:  Development of real-time change detection for moving object tracking with a static background 

5:  Assemble and test CS hardware prototype for high-speed detection 

 

Along the way we developed new concepts in Hadamard imaging and compressive sensing 

including the development of an improved multi-pixel compressive camera that operates on a 

multiplicity of spatial regions of the scene in parallel to speed imaging frame rate and also 

provide localization of anomalies detected in within the field of view.  We quantified the 

imaging and anomaly detection algorithms and architectures in simulation that utilized statistical 

methods for analyzing data in the compressed domain.  We then experimentally demonstrated 

operation on bench top hardware prototypes built at Rice and at InView based on both single-

pixel and  multi-pixel compressive camera designs. 

 

Compressed sensing approaches for rapid detection and tracking has direct applications in lower-

cost, higher-performance sensors particularly in the shortwave infrared where focal plane array 

solutions are expensive and low resolution. The systems developed here have direct application 

in autonomous vision systems for military, law enforcement, and border security uses.  

Commercial applications of compressed domain anomaly detection and tracking abound in 

machine vision, inspection and process control and image-based internet searching.   
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FOREWORD  

 

InView Technology Corporation and Rice University have had a long and fruitful collaboration 

on developing applications of the mathematical theory of compressive sensing and bringing them 

to market.  In 2013 InView released the world’s first compressive-sensing based camera built on 

the “single-pixel camera” architecture first conceived at Rice.  Since then we have collaborated 

on the development of the multi-pixel video camera architecture, multi-spectral systems, and 

advanced compressed domain image processing techniques.  In particular, InView would like to 

acknowledge the work of Rice professor Kevin Kelly and his growing research group for their 

many contributions to this project, as well as InView scientists Dr. Matthew A. Herman and 

Tyler Weston for their tireless efforts. 

 

Lenore McMackin, PhD,  

President and CTO InView Technology Corporation 
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EXECUTIVE SUMMARY 

 

InView, in partnership with Rice University, completed a two-year Phase II plan whose 

objectives defined the development of a compressive sensing-based high-speed detection and 

tracking sensor.  The Phase II work was built on the unique “single-pixel camera”  architecture 

and algorithms invented at Rice University and developed commercially by InView Technology 

Corporation.  In this architecture the compressive sensing sampling strategy is implemented 

optically using a high-resolution spatial light modulator that encodes the scene to be imaged with 

a set of patterns mathematically constructed to exploit redundancy in the structure of the scene to 

reduce the number of measurements required for faithful reconstruction.  While randomized 

patterns are effective in general imaging tasks, we show that patterns developed based on 

selected components of the Hadamard spectrum can be used for anomaly detection and have the 

advantage of requiring many fewer measurements than required for imaging.   

 

Compressed sensing approaches for rapid detection and tracking has direct applications in lower-

cost, higher-performance sensors particularly in the shortwave infrared where focal plane array 

solutions are expensive and low resolution. The systems developed here have direct application 

in autonomous vision systems for military, law enforcement, and border security uses.  

Commercial applications of compressed domain anomaly detection and tracking abound in 

machine vision, inspection and process control and image-based internet searching.   

 

 

The final report includes the following results in detail 

 Developed new algorithms and measurement strategies to perform and optimize compressed 

domain anomaly detection.  Throughout the project we compared STOne (Sum-to-One), and 

Walsh-Hadamard techniques in the Partial Complete data acquisition strategy.   

o Implemented the statisitical methods of z-score and MMD algorithms as anomaly 

detection methods in the compressed domain 

o Developed Partial Complete measurement strategy used previously for imaging, 

into a strategy for anomaly detection that maximizes detectable anomaly energy 

in the first few measurements so that as few measurements as possible need to be 

used for detection 

o Demonstrated that Partial Complete block subsets can be chosen that 

simultaneously cover the entire field of view without nulls and provide a strong 

signal for imaging and anomaly detection.  In particular, the canonical block set 

derived from 4 components of the Hadamard spectrum has shown optimal 

operation over a range of feature and anomaly sizes.   

o Demonstrated that only a fraction of the number of patterns within each selected 

block need to be used for high probability of detection 

o Developed ROC and PR curves as performance metrics  
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o Developed line broadening technique to improve detection capability  

 

o Used PR curves derived from simulations and experimental measurements to 

determine operating thresholds and operating limits for an anomaly detection 

camera as a function of noise and anomaly brightness and duration 

 

 Developed a re-programmable “virtual detector” method to implement an adaptable multi-

pixel compressive sensing measurement strategy on an available 64 x 64 InGaAs pixel array  

o Demonstrated that multi-pixel geometry operates at high speed compared to the 

single pixel CS geometry not only because multiple pixels are working in parallel, 

but also because only a few blocks of the Partial-Complete spectrum need to be 

measured 

o Implemented point spread function (PSF) method to improve the aggregation of 

measurements across multiple detectors in either a Focal Plane Array geometry or 

virtual array geometry to improve multi-pixel image quality and provide a more 

realistic anomaly detection simulation environment 

 Built demonstration systems at Rice and InView on which compressive multi-pixel imaging 

and anomaly detection has been implemented using the virtual array geometry, partial 

complete measurement strategy, MMD and Z-score anomaly detectors in the compressed 

data domain, and PSF for image reconstruction. 

o Demonstrated the detection of laser anomalies using all of these techniques on 

detecting laser anomalies in real video data in the presence of moving objects and 

background clutter  

o Completed experiments demonstrating operational range of the camera 

 Future work 

o Use of joint information across sensors  
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DESCRIPTION OF TECHNICAL RESULTS 

Section 1. Introduction 
 

The results of this Phase 2 STTR presented here represent the follow on to Phase 1 program 

A12a-T007 in which a new class of compressive sensing matrices were developed that can 

reconstruct images at multiple scales while also possessing corresponding fast transforms 

enabling high-speed low resolution image previews and full-scale image reconstructions. These 

matrices were dubbed Sum-to-One, or STOne pattern.
1
  New modes for change detection were 

explored for operation on CS-matrix encoded image data by predicting regional statistical 

outliers in the data by applying a combination of z-score test and the Maximum Mean 

Discrepancy (MMD) statistic in the compressive domain. The product of the Z-score and the 

MMD displayed the sensitivity of MMD while encoding the same qualitative information as the 

Z-statistic.  It was the goal of this Phase 2 to compare and optimize real-time anomaly detection 

methods developed in Phase I, implement them in simulation and experiment, and construct a 

prototype compressive sensing anomaly detection camera system. 

 

Early in the Phase 2 we found that the Partial-Complete sensing strategy
2,3

 developed at InView 

had several advantages in optimizing compressive domain feature encoding measurement 

patterns.  Like STOne patterns, they could be recursively generated from a Kronecker product, 

which also endows them with a fast transform.  In addition, the “sequency” structure partitions 

the Hadamard domain into sequency-based blocks of patterns related by scale size and spatial 

features that can be chosen to facilitate anomaly detection with a minimal number of 

measurements. The point of our simulation effort was to determine the minimum number of 

blocks and the minimum number of patterns from within each block necessary to achieve a 

certain level of anomaly detection precision and recall.  Higher operating speeds are associated 

with fewer patterns. It was found that 4 blocks are needed at a minimum that are carefully 

selected to observe the full field of view without nulls.  It was also found that a surprisingly low 

number of patterns from within each block can produce effective anomaly detection signals even 

in the presence of noise, facilitating the detection of short duration events.   

 

Using the partial-complete strategy also facilitated implementation of compressive sensing and 

anomaly detection on a multi-pixel compressive sensing camera architecture.  A multi-pixel 

architecture effectively parallelizes the single-pixel camera measurement path into multiple, 

simultaneously operating cameras each of which examines only a portion of the field of view.   

The Phase 2 began under the assumption that the multi-pixel camera already developed at 

InView
4
 would be the platform for experimental verification of the anomaly detection and 

tracking procedures.  However, the large amount of optical crosstalk between the channels 

                                                 
1
 Tom Goldstein, et al.,  “The STONE Transform: Multi-Resolution Image Enhancement and Real-Time 

Compressive Video,” arXiv:1311.3405v2.  
2
 Matthew A. Herman, “Compressive Sensing with Partial-Complete, Multiscale Hadamard Waveforms,” in 

Imaging and Applied Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM4C.3. 
3
 Matthew A. Herman, et al., “Recent results in single-pixel compressive imaging using selective measurement 

strategies,”  Proc. SPIE 9484, 948409 (2015). 
4
 Matthew A. Herman, et al., “A higher-speed compressive sensing camera through multi-diode design,” Proc. SPIE 

8717,  871706 (2013)   



Approved for public release; distribution unlimited.   
Report developed under Topic #A2-5466, contract W911NF-14-C-0006 DATA RIGHTS: IAW DFARS 252.227-7018(f).  
  Page 10 of 74 

ARMY STTR-A2-5466 Rapid anomaly detection and tracking via compressive time-spectra measurement 

 

inherent in that system produced specialized requirements for the modulation patterns that were 

not compatible with the partial complete strategy.  In response, InView and Rice designed and 

built a new multi-pixel architecture with greatly reduced crosstalk, a more direct optical path to 

the sensor and implemented the architecture using a commercially available 64 x64 InGaAs 

sensor array.  This architecture had the added benefit of having 4096 sensors compared to just 32 

sensors on the original system, and the ability to reconfigure these sensors digitally into “virtual” 

detectors with reconfigurable geometries. The following sections describe our results in more 

detail. 
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Section 2. Compressed Domain Anomaly detection Algorithms, Measurement 
Strategies and Simulations 
 

In compressive sensing (CS) of images, measurements of a scene x are observed via a 

measurement or sensing matrix A as y =Ax.  In this discretized model, x is assumed to have N pixels 

arranged in a column vector, and A is an underdetermined M×N matrix, where typically M << N.  Images 

are computationally reconstructed using information in the length-M vector y along with knowledge of the 

matrix A used to make the measurements.  

 

The oft used graphical representation of the matrix equation describing measurement vector y, is 

shown below:  

                                             y                                  A                        x               

 
Fig. 2-1.  Matrix representation of y = A x. 

 
Ideally, the rows of A are instances of random noise (e.g., drawn from a Gaussian or Bernoulli process). 

However, this requires significant memory storage when M∙N is large. Moreover, the computational 

complexity of the reconstruction algorithm cannot be reduced when A is purely random. Instead it is 

advantageous to use structured and deterministic waveforms, which can then be pseudo-randomized to 

achieve the property of “incoherence” desired in CS applications. These matrix types are often much 

more computationally cost effective and have additional advantages.  We now introduce the 

matrix structures that were investigated for use in compressive anomaly detection in this project. 

 
2.1 Sum-to-one and Walsh Hadamard Matrices 

 

A new class of compressive sensing matrices has been developed that are generated in an 

efficient implementation based on the Sum-to-One (STOne) transform and have been shown to 

reconstruct images at multiple scales. The STOne matrix, Sn , of order n = 4
k  

is recursively 

constructed via the Kronecker product
5
 

 

𝑆4𝑘+1 ∶=  𝑆4 ⊗ 𝑆4𝑘  (2-1) 

 

for k = 0, 1, 2, …, where S1 = [1] and 

                                                 
5
 T. Goldstein, et al., “The STONE transform: multi-resolution image enhancement and real-time compression 

video,” arXiv:1311.3405 
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.  (2-2) 

 

STOne matrices are orthogonal, and their rows and columns all add up to +1.  When data is 

acquired from a full-resolution N x N image using the STO transform, a block of n
2
 

measurements can be used to create a low-resolution “preview," in the form of an n x n image, 

where n < N, that approximates the full-scale N x N image. The low resolution preview is 

reconstructed using a simple fast transform, and is very inexpensive computationally.   

 

Throughout this project, the results of anomaly detection procedures using both STOne and 

Hadamard matrices were compared.  We found the behavior of the change detection algorithm to 

identify anomalies is essentially identical between STOne measurement patterns and scrambled 

or permuted versions of well known Walsh-Hadamard (WH) patterns.  Subsequent investigation 

showed that STOne matrices are equivalent to Sylvester Hadamard matrices  due , in part, to its 

recursive Kronecker product construction.   Based on this mathematical similarity and our 

experimental results, we focused our anomaly detection studies on patterns from permuted WH 

matrices and a special ordering of quasi-Sylvester Hadamard matrices.  

2.2 Sylvester Type Hadamard Matrices  

 

A general Hadamard matrix HN of order N is defined as having {±1} entries, with rows and 

columns that are orthogonal. The Kronecker product of two Hadamard matrices HF and HB is 

also a Hadamard matrix: 𝐻𝐹⋅𝐵 ∶=  𝐻𝐹 ⊗ 𝐻𝐵. We can characterize a given row (or column) of HN 

in terms of its “sequency," which simply counts the number of transitions from +1 to –1, or vice-

versa. This is similar to the familiar notion of “frequency" that we associate with sinusoids.  

 

The most common Hadamard matrices used in practice have orders that are powers of two. The 

Sylvester-type Hadamard matrix of order N = 2
K
, for some integer K, is recursively defined for 

all 1 ≤ 𝑚 ≤ 𝐾 − 1, according to 

 

 𝐻2𝐾 ≔ 𝐻2𝑚⨂ 𝐻2𝐾−𝑚   (2-3) 

 

Where 

 𝐻2 = [
+1 +1
+1 −1

]                                                 (2-4) 

 

is the fundamental building block.  

 

It is the K-fold application of the Kronecker product that endows the Sylvester-type matrix with 

a fast O(N log N) implementation,  similar to the fast Fourier transform (FFT). Thus, when 

referring to the fast Hadamard transform (FHT), we imply the form defined in Eq. (2-3).   
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For example, a  Sylvester-Hadamard matrix of order N = 8 is shown in the left panel of Figure 2-

2.The first row of a Sylvester-Hadamard matrix always consists of only plus ones, which 

corresponds to a sequency of zero, while the second row always consists of alternating plus ones 

and minus ones, which corresponds to the highest sequency: N  1. Sylvester-Hadamard matrices 

contain rows that span all of the sequencies from 0 to N  1. However, due to its recursive 

Kronecker construction, the ordering of these rows is not in terms of sequency, but rather in the 

“natural” order for power-of-two Hadamard matrices. If it is desired, the rows (or columns) can 

be reordered according to increasing sequency and this form is called the Walsh-type Hadamard 

matrix: 
𝑊𝑁 ∶=  𝑃𝑊𝐻𝑁 

 

where Pw is the necessary permutation matrix.   A Walsh-Hadamard matrix of order N = 8 is 

shown in the right panel of Fig. 2-2, where the rows increase in sequency from 0 to 7, downward 

from the top row. 

 
                                                     (a)                                           (b) 

Fig. 2-2. (a) Sylvester-type Hadamard matrix of order N=8.  Permuting the rows of this matrix leads to the 

sequency-ordered Walsh-Hadamard matrix in (b). 

 

 

2.3 Selective Measurement Strategies Enabled by the Block Structure of Kronecker 

product matrices 

 

The characteristics of Sylvester-type Hadamard matrices can be summarized as follows: 

• Efficient recursively generated patterns due to the Kronecker product:  1222  KK HHH  

• Kronecker product also endows a fast transform and access to information at local scales 

and global scales which is useful for multiple-pixel CS 

• Permuting rows of Sylvester-type Hadamard matrices creates the Sequency ordering of 

Walsh-type Hadamard matrices:  𝑊2𝐾 = 𝑃𝑊𝐻2𝐾  

• Sequency facilitates the grouping of patterns used for CS into blocks with similar local 

underlying features called “signatures” which are helpful in efficiently choosing the 

fewest and most effective patterns for compressive anomaly detection 

 

Our selective measurement strategy utilizes patterns obtained from a specially permuted 

Hadamard matrix that contains blocks of rows, of which each has a common local signature 

pattern. The sequency-based blocks partition the Hadamard spectrum, thus permitting analysis of 

the scene in terms of these local signature patterns. Note that Hadamard patterns are typically 
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described in terms of their sequency, which is a global property of each individual row. Instead, 

we only are only concerned with the local sequency structure. 

 

The local-signature, row-block point of view can be beneficial since it permits us to adaptively 

select the best blocks with which to sense the signal/scene of interest, or to select the best blocks 

based on a priori information. As a result, in imaging applications more fine-scale detail appears 

in the scene, and in detection applications fewer false positives can result.  

 

Note, this signature row-block partitioning is a general mathematical technique that can be 

applied to the Kronecker product of any two matrices, of any size (i.e., not just powers of two).  

As an example, we illustrate the technique by converting a Hadamard matrix to its Row-Block 

form. 

 

Assume 𝑁 = 𝐹 ⋅ 𝐵 and that there exist Hadamard matrices of order F and B such that 

 

𝐻𝑁 = 𝐻𝐹⨂𝐻𝐵 = [

ℎ0⨂𝐻𝐵

ℎ1⨂𝐻𝐵

⋮
ℎ𝐹−1⨂𝐻𝐵

] 

 

 

where we have denoted the rows of 𝐻𝐹 by ℎ𝑖. There exists a permutation P such that 

𝐻𝑁𝑃 = [

𝐻𝐵⨂ℎ0

𝐻𝐵⨂ℎ1

⋮
𝐻𝐵⨂ℎ𝐹−1

] = [

ℬ0

ℬ1

⋮
ℬ𝐹−1

] 

 

Here ℬ𝑖 = 𝐻𝐵⨂ℎ𝑖 represents the i
th

 matrix block, with B rows and N elements per row, of the 

signature row-block Kronecker product. The indexing of the [ℬ𝑖] blocks is with respect to the 

rows in HF and all B rows in each ℬ𝑖 are made up solely from the unique signature corresponding 

to the pattern in row ℎ𝑖.   

 

As an example, we show the case of 𝐻𝑁 = 𝐻𝐹⨂𝐻𝐵 = 𝐻8⨂𝐻4 seen in Fig. 2-3(a). .  In Fig. 2-

3(b), the columns of HN are permuted; the resulting signature row-block matrix HNP has blocks 

of B rows, each with a unique length-F signature.  In Fig. 2-3(c) the row-blocks of HNP are 

permuted to put the row-block local signatures in their sequency order. Note in this example F 

and B were both powers of two, and so the result is similar to a typical Walsh-Hadamard matrix. 

When B is not a power of two, then Figures (a)–(c) do not coincide with the familiar Sylvester- 

or Walsh-Hadamard matrices. Yet, at the same time, when F is constrained to be a power of two, 

we can exploit its spanning sequency property to examine local structures. This is illustrated in 

the next example. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 2-3 (a) Hadamard matrix 𝐻𝑁 = 𝐻𝐹⨂𝐻𝐵; (b) the columns of HN are permuted and 

each block of B = 4 rows has a unique length-F=8 signature; (c) the row-blocks of HNP 

are then permuted to put the block signatures in their sequency order.  

 

 

In the previous example the unique signatures are rows of matrix HF, and are one-dimensional in 

form.  To better visualize the “sequency” content of each signature, we may re-format the 

signatures into two-dimensional tiles.  While we still assume our Hadamard matrix to be of the 

form 𝐻𝑁 = 𝐻𝐹⨂𝐻𝐵, we also require 𝐹 = 4𝐾 so that the tiles will be squares of size 2𝐾 per side. 

Figure 2-4 shows 2-D local signature tiles for the case of F = 64, arranged in Walsh sequency 

H32 =  H8 H4 = =

=(H8 H4)∙P =
















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order. Evident from this tile ordering is that the content of the signatures goes from low 

frequency to high as you move from the upper left corner to the lower right.   

 

 
Fig. 2-4.  Two-dimensional local signature blocks arranged in Walsh order 

 

The value of the signature row-block structure is that we can use rows with known local 

signatures to extract information about an observed signal or scene. For many applications, it is 

the local information that is the most salient, e.g., the details, textures, or anomalies within an 

observed scene. For CS, we can choose to use all, or only some, of the patterns within a block 

according to our sampling budget.  

 

Under our row-block signature structure, the CS measurement process is modeled by 𝑦 = 𝐴𝑥 + 

e, where the measurement matrix A is now given by  

 

𝐴 = 𝑅(𝑃𝑊𝐻𝑁𝑃)𝐷 
 

The term in brackets is the row- and column-permuted Hadamard, D is a diagonal matrix that 

acts as a coarse scale random modulator with solid {±1} over tiles the size of a signature tile, and 

R chooses signature blocks of interest and samples individual rows within those blocks. 

 

Clean Block Energy2-D Walsh Blocks
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(a) 

 
(b) 

Fig. 2-5. (a) Hadamard spectrum of image, x, where Hadamard encoded 

measurements are arranged in sequency blocks based on the signature tiles 

indicated in the graph; (b) Image, x. 

 

Consider the image x in Figure 2-5(b), which contains N = 768×1024 = 64∙12288 pixels. By 

choosing F = 64 blocks with B = 12288 patterns per block we can implement the desired 

signature row-block structure (where in this case B is not a power of two). The Hadamard 

spectrum 𝑃𝑊𝐻𝑁𝑃𝐷 of image x is shown in Fig. 2-5(a), where signals from selected signature 

blocks are notated. Note that the 2-D spectrum has been vectorized into 1-D, but that the 

measurements within each signature block (shown in Fig. 2-4) are still grouped together. The 

amplitude of the signal indicates the relative strength of the signature pattern in the image.  

Through experiments and simulations we have demonstrated that choosing a set of 

measurements from a complementary set of four (4) blocks is sufficient to perform anomaly 

detection in a process we call Partial Complete.
6, 7 

 

2.4 Partial Complete 

 

The Partial-Complete (PC) schema partitions the Hadamard spectrum into separate blocks, 

where each block contains data with a specific scale of spatial frequency. By subsampling each 

of the blocks (e.g., 1%, or less) we obtain a sufficient statistic that determines the best blocks to 

use, thereby adapting the sensing strategy to use the waveforms that are best matched to the 

scene.  

We also applied the PC sensing strategy to the simulations and by carefully selecting the 

measurement kernels, observed a concentration of the anomaly signal in well-defined blocks of 

the PC Hadamard spectrum.  Figure 2-6 illustrates the motivation for choosing only these blocks.  

A direct visualization of signal in each transform block during movement of the anomaly (in red) 

shows that a majority of the energy is concentrated in this set when compared to background 

video sequence (in blue). While the amplitude within each block varies when the anomaly is 

spatially convolved with different regions of the background, the total energy between all blocks 

is nearly constant. 

                                                 
6
 Herman, M. A., “Compressive Sensing with Partial-Complete, Multiscale Hadamard Waveforms," Proc. Op- 

tical Society of America, Imaging and Applied Optics (Arlington, VA, June 2013). 
7
 Matthew A. Herman, Tyler Weston,  Lenore McMackin, Yun Li, Jianbo Chen,  Kevin F. Kelly, “Recent results in 

single-pixel compressive imaging using selective measurement strategies,”  Proc. SPIE 9484, Compressive Sensing 

IV, 94840A (May 14, 2015); 
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Fig. 2-6. Snapshots of Partial-Complete Hadamard spectrum as the anomaly crosses the image. 

Components in red show significant change between anomaly and non-anomaly cases and can be used for 

anomaly detection. 

2.5 PC Block selection strategy 

Recall for a scene with N pixels that we split the Hadamard domain into F = 4
K
 non-overlapping 

blocks, with B = N/F measurements per block. An important dual feature is that the pixel domain 

is partitioned at the same time into B non-overlapping tiles, each of size 2
K
×2

K
 pixels. There is a 

strong periodicity induced in the pixel domain by the structure of the Hadamard waveforms as a 

result of their Kronecker product structure. So while we can choose to take measurements only 

from blocks selected from the Hadamard spectrum based on signal strength, one drawback is that 

certain periodic nodal patterns appear in the dual pixel (spatial) domain. The nulls in these nodal 

patterns record minimal, or in some cases zero energy, effectively creating blind spots in the 

spatial domain where anomalies would be overlooked.  Therefore, in addition to selecting blocks 

based on spectral energy content we also want to select measurements from complementary 

blocks whose pixel-domain patterns contain no nulls when they are taken together. 

 

We focus now on the case of scenes with N = 256×256 = 2
16

 pixels and F = 64 blocks (labeled as 

Ɓ0,…,Ɓ63), which results in B = 2
10

 measurements per block in the Hadamard domain; in the 

pixel domain this results in B = 2
10

 tiles partitioning the FOV, where each tile contains 8×8 

pixels. As previously discussed, this can be easily generalized to the case of B that is not a power 

of two. 

 

The energy patterns resulting from measurements from different Hadamard row-blocks are 

illustrated in Fig. 2-7, where we show an example image frame and highlight the region of the 

image in which we shift the anomaly pixel by pixel.  Each of the single-block cases show nulls 

represented by dark-colored lines in the patterns.  When the patterns are averaged together all of 

the nulls are removed, showing that these four blocks provide a complement to each other. 
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Fig. 2-7. Anomaly energy as a function of a 2x2 anomaly positioned within the red square of the 

example frame for four selected blocks of the Hadamard spectrum.  Dark areas corresponding to 

low anomaly energy are eliminated when the blocks are combined.  

 

The graphs above depict the average absolute block energy Ek of the anomaly in the Hadamard 

domain 

 

       𝐸𝑘 =
1

𝐵
∑ |𝐸𝑘,𝑖|

𝐵−1
𝑖=0      

 

where 𝐸𝑘,𝑖 is the spectral energy of the anomaly in the ith measurement from block Ɓk 

 

         𝐸𝑘,𝑖 = 𝐻Ɓ𝑘,𝑖
1 − 𝐻Ɓ𝑘,𝑖

0           

 

and 𝐻Ɓ𝑘,𝑖
1  is the ith Hadamard measurement from block Ɓk with the anomaly in the scene, and 

𝐻Ɓ𝑘,𝑖
0  corresponds to the scene when the anomaly is not present. Specifically, we denote the 

scene of interest without the anomaly as 𝑥0, and the scene 𝑥1 with anomaly 𝑧 as 

 

𝑥1 = 𝑥0 + 𝑧. 
 

Block 36  

Block 52  

Average 

Block 38  

Block 54  

Example frame 
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Note, since the Hadamard transform is a linear operator, their difference yields the Hadamard 

transform of the anomaly. In particular, for the ith mode (or measurement) of block Ɓk of the 

Hadamard transform of 𝑥1 we have  

 

𝐻Ɓ𝑘,𝑖
1 = 𝐻Ɓ𝑘,𝑖(𝑥1) = 𝐻Ɓ𝑘,𝑖(𝑥0 + 𝑧) = 𝐻Ɓ𝑘,𝑖(𝑥0) + 𝐻Ɓ𝑘,𝑖(𝑧) =  𝐻Ɓ𝑘,𝑖

0 + 𝐸𝑘,𝑖 . 

 

Solving for 𝐸𝑘,𝑖 yields the expression above. Note, other ways of determining 𝐸𝑘,𝑖 are also 

possible. Other complementary groups include:  

 

{Ɓ4,Ɓ6,Ɓ32,Ɓ48}, {Ɓ36,Ɓ38,Ɓ52,Ɓ54}, {Ɓ2,Ɓ3,Ɓ16,Ɓ24}, 

{Ɓ34,Ɓ35,Ɓ50,Ɓ51}, {Ɓ20,Ɓ22,Ɓ28,Ɓ30}, {Ɓ18,Ɓ19,Ɓ26,Ɓ27 }. 

 

In addition to having no energy nulls when taken as a group, the members of each of these 

groups share a certain scale level, as shown in the tiles below.  This makes each set a good 

choice for detecting anomalies of a specific size corresponding to that sequency level.  In 

general, we found that the measurements from the group {Ɓ36,Ɓ38,Ɓ52,Ɓ54} yielded the highest 

energy overall. Thus, without a priori knowledge of size of the anomaly this group seems to be 

wisest choice to focus on.  

 

Set 1  {Ɓ4,Ɓ6,Ɓ32,Ɓ48}, 

 
 

Set 2  {Ɓ36,Ɓ38,Ɓ52,Ɓ54} 

 
 

Set 3 {Ɓ2,Ɓ3,Ɓ16,Ɓ24} 

 
 

Set 4 {Ɓ34,Ɓ35,Ɓ50,Ɓ51} 
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Set 5 {Ɓ20,Ɓ22,Ɓ28,Ɓ30} 

 
 

Set 6 {Ɓ18,Ɓ19,Ɓ26,Ɓ27 } 

 
 

Fig. 2-8.  Signature tiles of complementary Hadamard block sets corresponding to different anomaly sizes 

(e.g., for size 2×2, we would choose measurements from group {Ɓ18,Ɓ19,Ɓ26,Ɓ27 }. 

 

 

 

2.6 Local global specifically designed for multi-detector architectures 

 

In this project we transitioned from a single-pixel architecture to a multiple pixel architecture to 

increase the speed of acquisition of compressive sensing measurements for imaging and for 

anomaly detection. The hardware development part of the program implemented a multi-pixel 

architecture using a small array of InGaAs pixels (64 x 64) in place of a single photodetector.  

The hardware is described in more detail in a later section.  Here we note that the highest 

efficiency is gained when compressive measurements are not only acquired in parallel by 

multiple detectors, but also that the field of view corresponding to each of the detectors is 

encoded in a way that relates it to its neighbors.   

 

We completed a description of theory and Matlab implementation of dual Local-Global 

measurements, which is a measurement technique that is specifically designed for multi-detector 

architectures.  The key enabling idea is that an N×N transform matrix HN that can be 

decomposed as the Kronecker product of two smaller transforms possesses tremendous structure 

of which we can take advantage for efficient imaging and anomaly detection. The mathematical 

analysis below shows that we have access to both local and global transforms.  This means that 

we can compare the statistics of transform data associated with different sized scenes providing 
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access to multiple scales of data from one set of measurements. This can help to detect anomalies 

efficiently.  

 

We developed a process based on Local-Global measurement strategy to relate the local data 

(i.e., taken in the compressive measurement domain) to the global domain without having to 

reconstruct the scene in the pixel domain.  Based on careful mathematical analysis, we have 

developed a technique that allows us to choose just a few detectors (e.g., any contiguous 2×2, 

4×4, 8×8, etc.) and groom their measurements together as if just a single detector was viewing 

the respective larger FOV. 

 

This new method can be of benefit since we can now look at the statistics of multiple scales of a 

scene of interest in the compressive measurement domain.  In fact, we can now have access to all 

of the local and global data, as well as all scales in between all at the same time. Examining the 

statistics at different scales should provide another tool with which to detect anomalies. 

 

The key enabling idea to Local-Global  is that an N×N transform matrix HN that can be 

decomposed as the Kronecker product of two smaller transforms 

HN = HF ⊗HB 

possesses tremendous structure that we can take advantage of. For example, the well known 

Sylvester Hadamard and STOne transform matrices satisfy this Kronecker product 

decomposition. In particular, we can use the mixed-product property of Kronecker products to 

show that  

HN = (HF ⊗IB) (IF ⊗HB)                (2-5) 

where In denotes an n×n identity matrix. Here, (HF ⊗IB) is a sparse matrix and (IF ⊗HB) is block 

diagonal. Then the HN-transform of a length-N vector x  

X = HN x 

can be viewed as a two-stage process associated with the mappings (HF ⊗IB) and (IF ⊗HB) in (2-5). 

The first stage consists of optically acquiring the local transform data of smaller non-overlapping 

blocks of the signal. Since N = BF, we split the signal x into F non-overlapping groups of length B 

x = [x0, x1, …, xF-1] 

and denote Xk as the HB-transform of the kth group xk, for k = 0, 1, …, F-1. The set {Xk} contains all the 

local or micro information of the scene, which is obtained in parallel in the first stage of the 

process via the intermediate transform  

XInt = (IF ⊗HB) x = [X0, X1, …, XF-1].              (2-6) 

In the case of our proposed focal-plane array (FPA) transform-camera, the kth detector acquires 

the HB-transform data from the small scene xk.  
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The second stage of the process, implemented in hardware, consists of mathematically 

multiplexing the local transform data using the macro weighting patterns contained in HF via the 

mapping   

X = (HF ⊗IB) XInt.                          (2-7) 

Thus we have access to both local and global transform data, essentially simultaneously. 

Moreover, assuming that a matrix HF’ exists with F’<F, we can obtain smaller global transforms of 

size N’ = BF’ 

X’ = (HF’ ⊗IB) X’Int                          

where X’Int contains just F’ of the Xk (note that XInt in Eq.(2-6) contains all F of the Xk), which do not 

have to be contiguous groups. This means that we can compare the statistics of various transform 

data {Xk}, {X’}, X associated with different sized scenes; essentially, we have access to multiple 

scales of data. This can help to detect anomalies.  

 

2.7 Mean-to-deviation versus SNR analysis of compressive measurements 

Compressive sensing measurements are fundamentally different from pixel-based imaging and 

detection methods.  Previous studies
8
 have examined theoretical aspects of signal-to-noise (SNR) 

comparing single-pixel based imaging to focal plane array imaging.  While instructive, these 

studies are difficult to interpret in experimental systems.  We have we examined how to better 

assess the signal-to-noise ratio (SNR) of our camera system. Specifically, we have changed our 

perspective to now be with respect to the optical signal, since this is the domain in which we 

actually make our measurements.  

 

First, we defined a new metric, which we have named the mean-to-deviation ratio (MDR). For a 

given set of ideal, noiseless samples in the optical domain, yopt,clean, denote  

 

μclean = mean(yopt,clean)   and   σclean = std(yopt,clean)  

 

as their mean and standard deviation, respectively. Note that the mean μclean provides no salient 

information of the observed scene except its overall brightness. Instead, the information of the 

scene is encoded into the deviations around the mean. Thus, the standard deviation σclean 

provides a metric describing the average energy of this encoded information. The mean-to-

deviation ratio (MDR) defined as  

 

      MDR = μclean/σclean, 
 

                                                 
8
 Joel A. Tropp, Jason N. Laska, Marco F. Duarte, Justin K. Romberg, and Richard G. Baraniuk, “Beyond Nyquist: 

Efficient Sampling of Sparse Bandlimited Signals,”  in Information Theory, IEEE Transactions on , vol.56, no.1, 

pp.520-544, Jan. 2010. 
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essentially quantifies how much larger the brightness of the scene is as compared to the energy 

of its encoded deviations, providing a metric analogous to signal-to-noise ratio specifically 

describing signal levels in a compressive sensing measurement system.   In terms of decibels, 

MDR can be expressed as  

 

   MDRdB = 20∙log10(MDR). 

 

The MDR is a good metric to assess the limits of the dynamic range of an observed scene’s 

measurements, but it is only with respect to an ideal, noiseless scenario. In practice, we observe 

noisy measurements in the form of 

      yopt,meas = yopt,clean + e, 

 

where e represents additive noise. Denote μmeas = mean(yopt,meas) as the mean of the noisy signal, 

and σnoise = std(e) as the standard deviation of the additive noise. Assuming the noise is of zero 

mean, we can claim μmeas ≈ μclean. Then, with the SNR defined as  

 

   SNR = μmeas/σnoise ≈ μclean/σnoise, 

 

we can examine the ratio of SNR to MDR: 

 

SNR/MDR ≈ (μclean/σnoise) /(μclean/σclean) = σclean/σnoise. 

 

Clearly, this means that the SNR of CS measurements needs to be better than the MDR, i.e., the 

energy of deviations due to the encoded scene must be greater than the energy of deviations 

contributed by the noise. We are currently in the process of quantifying experimental signal 

requirements based on this analysis. For example, for images viewed with a 256×256 portion of 

the DMD, we found most scenes to have an MDRdB in the range of 45–48 dB. We found a good 

rule of thumb is for the SNR to be at least 10 dB greater than the MDR.  

 

2.8 Z-Score and MMD 

 

During Phase I, we explored new modes for change detection based on Eq. (2-5) observing the 

statistics of groups of compressive measurements in the time domain.  Anomalies can be 

detected because they create compressive measurements that are statistical outliers. 

 

The “Z-score”, also known as standard score in statistics, is the number of standard deviations an 

observation or data is away from the mean. Thus, a positive standard score represents a datum 

above the mean, while a negative standard score represents a datum below the mean.  

The “MMD”, also known as maximum mean discrepancy
9
, is a criterion that was used in Phase 1 

to determine whether two sets of data are from the same or different probability distributions.   

We found that the product of these two criteria created a sensitive statistic for anomaly detection 

in the compressed domain.  

                                                 
9
 Gretton, A., Borgwardt, K. M., Rasch, M., Schlkopf, B., and Smola, A. J., “A kernel approach to comparing 

distributions," in [Proc. of the 22nd AAAI Conf. on Artificial Intelligence], 1637-1641, AAAI Press (2007). 
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2.9 Anomaly detection statistics testing simulations with Partial-Complete Block Sets  

 

Using the MMD-Z-score product as our statistical metric, we investigated the performance of 

compressed domain anomaly detection in simulation.  The point of these simulations was to 

determine whether measurements were optimized by selecting them from partial-complete block 

sets of the Hadamard spectrum on the basis of both 1) similarity of the sequency pattern to the 

anomaly size and 2) complementarity to other patterns for full field of view coverage without 

nulls.  The results of these simulations, shown next, confirm that this selection process performs 

well.   

The simulation setting is identical to the cases used throughout this project using the same set of 

video frames to simulate a changing scene. As illustrated in Fig. 2-9, two cars are pulled towards 

each other in front of a color-checker board at frame rate of 250 fps at a resolution of 256 × 256.  

We let the anomaly appear once in the sequence of frames, starting at 1/3 of the simulation time 

and lasting for approximately 1/3 of the total time. As shown in Figure 1(b), the anomaly was a 

4x4 block of pixels with an intensity of approximately 8 times the scene average. To better 

simulate the problem, we gave the anomaly intensity a Gaussian profile. 

  
Fig. 2-9. From left to right are three frames of scene images (256 × 256) showing two toy cars moving 

towards each other. In (b), a bright pixel-block of size 4 × 4 in the background represents an anomaly point. 

In the first simulation we set the anomaly at pixel location (76, 76) and tested all candidate block 

sets. We added 5dB image noise to the movie. Since the scene has N = 256×256 = 64∙1024 

pixels, if we use F = 64 signature blocks, then each block will contain B = 1024 patterns to 

observe the scene with. We begin with using four full blocks in each set as the detection patterns. 

Thus, the 100% detection cycle is 4096 measurements in length. Then, to reduce data acquisition 

requirements, we only use a randomly selected quarter of the measurements within each block so 

the total cycle length for results shown in Fig. 2-10 is 1024.  We repeat the same strategy for 

each of the test block sets, and plot the results below.  From Figure 2-10(a) we see that the use of 

Block Set 1 is encouraging since the raw data with and without the anomaly look so similar, yet 

the algorithm is able to detect the anomaly.  Results from Block Set 2 in Figure 2-10(b) also 

contain good detection results as expected. Block Set 3 in Figure 2-10(c) does not detect the 

anomaly This was not surprising since the signature contained in the Set 3 Hadamard block 

corresponds to patterns with 2-pixel-wide stripes (see Fig. 2-8),which does not complement the 

4x4-pixel structure of the anomaly.  Similarly, results for trial Block Sets 4, 5, and 6, shown in 

Figure 2-11, do not show anomaly detection. 

(b) (a) (c) 
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(a)                                                                        (b)                                                                              (c) 

 
Figure 2-10. Detection results via (a) Set1, (b) Set2, (c) Set 3. In each case the detection window is data 256 points. The first row is the synthetic data; the 

second row is the change (anomaly indicator) plotted on a semilog scale; the third row is the change plot; fourth row is the Z-score; and the last row shows 

the MMD score. 
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                                  (a)                                                        (b)                                                           (c) 

 
Fig. 2-11. Detection results via (a) Set 4, (b) Set 5, (c) Set 6. In each case the detection window is 256 data points show no change is detected.   This is 

expected due to the mismatch between selected pattern blocks and the characteristics of the anomaly. 
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We also conducted laboratory experiments on the Partial-Complete block detection scheme.  We 

used a laser pointer to represent an anomaly in a scene imaged by the single-pixel camera (SPC). 

For a fixed FOV, the scene with and without an anomaly was acquired at two different 

resolutions: 128x128 pixels and 256x256 pixels.   During the acquisition, the car moved across 

the FOV horizontally. The dominant part of anomaly point (laser point) was verified as having a 

FWHM support of approximately 4x4 pixels in the finer scale 256x256-pixel scene, as shown in 

the inset to Figure 2-12. When coarsified to the 128x128-pixel scene, this same anomaly should 

have a support of approximately 2x2 pixels, enabling us to test two different anomaly scale sizes. 

 

 
Fig. 2-12. Left image is the example frame captured by the SPC (256x256); Right image is a 

zoom in of the anomaly. 

 

 

2.10 ROC and PR curve development and calculation of thresholds 

 

While it is instructive to display the results of simulations and experiments in a format that 

includes the data, the MMD and Z-score and the combined detection metric in four separate 

graphs for each measurement, we have generated receiver operating characteristic (ROC) 

curves
10

 as a way to evaluate and present the performance of our anomaly detection algorithm 

for different scenarios.  ROC curves are a convenient and succinct way to illustrate the behavior 

of a binary classifier. Our change detection algorithm, at any given moment of time, gives a 

“score” or a probability as to whether or not an anomaly is present. When this score is above or 

below a certain threshold, the algorithm acts as a binary classifier. 

 

2.11 Background on ROC curves 

ROC curves are based on a so-called “confusion matrix,” which consists of the total number of 

true positives (TP), false negatives (FN), false positives (FP), and true negatives (TN) that were 

determined by the binary classifier for a given threshold. Table 1 shows the canonical confusion 

matrix, where the columns indicate whether a particular event was actually a positive or negative 

                                                 
10

 Fawcett, Tom (2004); ROC Graphs: Notes and Practical Considerations for Researchers, Pattern Recognition 

Letters, 27(8):882–891. 

http://home.comcast.net/~tom.fawcett/public_html/papers/ROC101.pdf
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occurrence, and the rows indicate whether that event was classified as a positive or negative 

occurrence. The TP, FP, FN, TN labels then follow directly from their respective definitions. 

Table 1. The confusion matrix associated with a binary classifier. 

 Actual Positive Actual Negative 

Positive Classification TP FP 

Negative Classification FN TN 

 

Given the confusion matrix for a certain situation, the ROC curve is simply a graph of the true 

positive rate: 
 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (2-8) 

       

versus the false positive rate: 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
   (2-9) 

 

 

2.12 Development of Precision Recall curves:  Better than ROC 

The well known metric of a ROC curve simply illustrates the true positive rate (TPR) versus the 

false positive rate (FPR). However, we have noticed that certain characteristics of the statistical 

change detection methods used with compressive data acquisition prevent ideal ROC 

performance.  Specifically, for a single positive event (i.e., an anomaly appearing or 

disappearing) the change detection outputs a series of large spikes in a window of approximately 

4096 (each point corresponds to a moment of time). The location of the spikes within this 

window is not uniform, and is always different. This is due to the different times as well as 

different locations of the anomaly appearing and disappearing from the scene. In order to assign 

whether the algorithm has properly classified a moment of time as a true positive (TP) or a false 

positive (FP), we must be able to correlate that moment of time with whether the original 

moment of time was actually a positive or negative event. It the current algorithm, this means 

that although we are correctly classifying positive events, we are unable to properly quantify it in 

the context of a TPR and a FPR, and to display their relationship in an ROC curve. 

 

Fortunately, the ROC curve is just one possible metric that can be derived from the confusion 

matrix. When dealing highly skewed events (e.g., a very brief anomaly) a different metric, called 

the Precision-Recall (PR) curve, can better capture the behavior of binary classification 

algorithms.
11

 “Recall” is the same as the TPR in Eq. (2-8). It only uses information from the first 

column of the confusion matrix, and answers the question: 

 

“For all of the actual positive events, what percentage of them were correctly classified?” 

                                                 
11

 J. Davis and M. Goodrich, “The Relationship Between Precision-Recall and ROC Curves,” Proceedings of the 

23rd International Conference on Machine Learning, Pittsburgh, PA, 2006. 

 



Approved for public release; distribution unlimited.   
Report developed under Topic #A2-5466, contract W911NF-14-C-0006 DATA RIGHTS: IAW DFARS 252.227-7018(f).  
  Page 30 of 74 

ARMY STTR-A2-5466 Rapid anomaly detection and tracking via compressive time-spectra measurement 

 

 

The new measured rate, Precision, is defined as 

 

    Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
.              (2-10) 

 

Notice that it only uses information from the first row of the confusion matrix: these are the 

events that were classified as positive. Hence, Precision answers the question: 

 

“For all the events that were classified as positive, what percentage of them were actually 

positive?” 
 

 

Observing brief anomalies present a scenario whose positive and negative events are highly 

skewed, say by a ratio of 4–6 orders of magnitude. Since the ROC curve is insensitive to the 

skew of classes, we instead constructed and analyzed the PR curve, which can tell much more 

about the behavior of algorithm.  

 

 

In the following section we summarize the results of our experimental investigation of high 

speed event detection in the compressed domain.  

 

Section 3.  Implementing adaptive compressed sensing methods on a focal 
plane array 
 

The single pixel model of compressive sensing drove the imaging and anomaly detection 

simulations of the previous section. Extending the design of the imaging and detection system to 

include a multi-pixel sensor improves our range of possible applications. The multi-pixel model 

allows us to multiplex many measurements simultaneously, allowing for higher speeds. The 

multi-pixel model is also suited to the Partial-Complete and Local-Global measurement 

strategies which can add further efficiency to anomaly detection, foreground/background 

subtraction and library learning.  

 

In Section 2, we outlined several measurement selection strategies, including Partial-Complete 

measurements, which can be implemented in either single- or multiple-pixel systems, and Local-

Global measurements, which are taken from multiple detectors. The key enabling idea in both 

theories is that an N×N transform matrix HN that can be decomposed as the Kronecker product of 

two smaller transforms. The recursive structure of the Kronecker product is a fundamental 

enabler to efficient measurement acquisition. Our mathematical analysis showed that we have 

access to both local and global transforms, meaning we can compare the statistics of transform 

data associated with different sized scenes (that is, multiple scales of data) from one set of 

measurements. This can help to detect anomalies efficiently.  

 

In this section we first describe the multi-pixel compressive camera for imaging and anomaly 

detection, and virtual channel geometries for multi-pixel compressive measurements.  We then 
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describe development and testing of point-spread function calibration matrix for correction of 

optical path distortions and image stitching. 

 

 

3.1 Anomaly Detection Table Top Demonstrator and Laser Anomaly Design 

 

To support anomaly detection simulations and experimental implementations, a multi-pixel 

imaging system has been developed at InView. In this imaging system, the InView camera is 

focused on a target, the DMD modulates the target scene, and the 64 x 64 sensor array captures a 

sequence of images of the modulated image with a frame rate of up to 1 kHz. After the array is 

read out, the pixels of the image sequence are electronically binned into separate virtual channel 

readings. The system is shown in Fig. 3-1 below. 

 

 
Figure 3-1. Compressive camera with multi-pixel optics and electronics modifications used in our 

experiments. Parts labeled are: (1) pattern generator BNC connection; (2) pattern generator PCIe 

connection; (3) sensor array BNC connection;(4) CameraLink connection to the Hamamatsu 64 

x64 sensor array. 

 

3.2 Hardware Synchronization  

 

The system required optical and electrical modifications to the original single-pixel camera to 

support the multi-pixel sensor.  The main optical modification replaces a condensing lens system 

located after the DMD with an imaging system that relays the modulated DMD image to the 

detector plane.  Electrical modifications were required to synchronize the patterns shown on the 

DMD with the measurements taken by the multi-sensor Hamamatsu detector array. The BNC 

cable shown in Fig. 3-1 connects the DMD pattern generator’s sync signal with the Hamamatsu 

detector’s trigger line.  

 

The system utilizes two computers to drive the hardware. One PC connects via PCIe to the DMD 

pattern generator. Another PC connects to the sensor via CameraLink. The synchronization of 

DMD patterns and sensor acquisition is made possible with the BNC trigger line. Controlling 

sensor features such as exposure time and trigger source require use of the Hamamatsu custom 

API rather than the standard Camera Link API. To enable image data acquisition, we bridge the 

two controlling PCs by running a network daemon on each PC.  
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At the start of an acquisition, the pattern generation and sensor computers perform a network 

synchronization. First the machines negotiate the number of buffers they are each able to record 

for a single time-continuous experiment. Then the sensor readies itself to receive the triggers. 

Once the sensor is ready and listening for the first trigger, pattern generation starts.  This process 

is shown in the diagram of Fig. 3-2. 

 

 
 

Figure 3-2.  Synchronization diagram showing communication links between the Pattern Generator, DMD 

controller and Hamamatsu multi-pixel sensor for acquiring CS data. 

 

Some example Hadamard data acquired using this process is included below in Fig. 3-3. The 

chart graphs ten sensors from the middle of the Hamamatsu array as they recorded 40 

modulation patterns from the DMD. The PCIe transfer maximum speed is currently more than 

half of the maximum frame rate of the Hamamatsu sensor (1 kHz), so we are currently not 

oversampling the DMD modulation.  
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Figure 3-3. CS data from Hamamatsu multi-pixel based camera taken in sync with patterns 

generated on the DMD and data acquisition control signals. 

  

3.3 Laser Trigger Anomaly Control Experiment Results 

  

We introduced a software system to control the laser and car movement mechanism in the 

anomaly detection experiment set, in order to obtain the ground truth of the anomaly that match 

with the raw data measurements, and then use the data sets for the ROC and PR curve analysis.   

We show below the experimental results of the laser trigger system that verify the 

synchronization between the laser trigger ground truth and the anomaly measurement data. 

 

 
Figure 3-4.  2-channel Relay set used to precisely control the appearance of a laser 

anomaly in anomaly detection experiments. 

 

The trigger system is realized using a two-channel relay set like the one shown in Fig. 3-4. A 

relay is an electrically operated switch and is used where it is necessary to control a circuit by a 

low-power signal (with complete electrical isolation between control and controlled circuits such 

as TTL or ADC voltage output), or where several circuits must be controlled by one signal. In 

our experiment the relay set has two channels: one controls the laser as an anomaly and one 

controls the motor that pulls the car moving across the scene.   Fig. 3-5 shows the results of the 

measurement data overlay with the laser trigger ground truth that was obtained both from the 

National Instrument analog and digital convert device. We can see that the trigger edges of the 

laser match well with the light intensity increase in the measurement data. 
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Figure 3-5, A comparison between the laser trigger ground truth (red) and the measurement data 

(blue), the DMD is running random Walsh-Hadamard pattern at 1 kHz. 

 

The relay system allows us to control the desired event precisely, providing confidence that 

consistency with measurements can be achieved.  

 

 

3.4 “Virtual channel” geometry for imaging and anomaly detection 
 

In this section, we describe how we choose image sub-regions for imaging and anomaly 

detection by grouping FPA pixels on a 64×64 Hamamatsu detector array into virtual channels.  

Of all possible configurations of sensors and mirrors the 8 x 8 array of virtual sensors was found 

most convenient for testing the partial complete (PC) measurement selection strategy. This 

“canonical” configuration of grouped FPA detectors and corresponding DMD mirrors is set up in 

the following way: 

 

An area of the DMD encompassing a square group of 512x512 mirrors is subdivided into an 8x8 

array of 64x64-mirror groups. The Partial-Complete (PC) patterns we put on DMD have a 

resolution of 64 x 64 mirrors and are duplicated across each of these 64 mirror groups on the 

DMD to fill the 512 x 512-mirror area. In the ideal case, the FPA pixels are binned into an 

8x8array of virtual detectors.  As a result, each of these 64 virtual channels (of FPA pixels) 

receives a signal from a block of 64 x 64 mirrors on the DMD.  In reality, the mapping from 

DMD mirror groups to the virtual detector channels is not clearly delineated because optical 

aberrations are introduced by the DMD and the relay optics.   In finding a mapping from the 

DMD to the channels of the FPA in multi-pixel compressive sensing, an important issue is how 

to deal with image distortions.  In this project we investigated using an experimentally 

determined point spread function (PSF) to describe the actual mapping from the DMD to the 



Approved for public release; distribution unlimited.   
Report developed under Topic #A2-5466, contract W911NF-14-C-0006 DATA RIGHTS: IAW DFARS 252.227-7018(f).  
  Page 35 of 74 

ARMY STTR-A2-5466 Rapid anomaly detection and tracking via compressive time-spectra measurement 

 

detectors, and implemented it as a matrix inserted into the optimization process, as described 

next. 

 

We used a square 512×512 portion of the DMD to sense an observed scene. Due to the optics, 

the image of scene on the FPA was skewed. A snapshot of a “flat” (i.e., empty) scene imaged 

with all of the DMD mirrors set to the ON position is shown in Fig. 3-6. We can clearly see 

skewing of the square FOV. 

 
Figure 3-6. Distortion and skew can be seen by observing a flat (empty) scene and turning the active 

512×512 portion of the DMD mirrors to the ON position. 

 

As mentioned previously, we created an 8×8 array of virtual channels, where each channel is 

comprised of a portion of the FPA’s active 4096 detectors yet treated as a distinct “single-pixel” 

camera. Ideally, each virtual channel should only receive light from a 64×64 region of the 

DMD’s 512×512 active mirror area. However, due to the skewing, distortion and optical 

crosstalk, the mapping of DMD mirrors to virtual channels is non-trivial. In order to determine 

the mapping we rastered a 64×64 region across the DMD’s  512×512 active area and recorded 

which of the FPA’s detectors received light. The resulting 8×8 array of snapshots from this raster 

scan can be seen in  Fig. 3-7. 
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Figure 3-7. The 8×8 array of virtual channels obtained by rastering a 64×64 section of the active 512×512 

portion of the DMD. This provides the mapping from the DMD mirrors to the 64 virtual channels. 

 

Fig. 3-8 shows what happens when we superimpose images all of the virtual channels. The left 

panel shows the result from simply summing up the raw snapshot frame data from all 64 raster 

shifts; we also see a significant amount of background noise, which was found to be due to 

detector dark current.  
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Figure 3-8. Superimposing the 8×8 array of virtual channels into one image. (Left) Result using raw frame 

data, fi. (Center) Dark noise frame, fdark.  (Right) Result after each data frame has been adjusted for dark 

current, fi,adj, as in Eq. (1). Note that the scale is on the order of 10
4
 for frame data and on the order of 500 

for the dark frame. 

 

The background noise due to dark current is quantified by taking measurements with the sensor 

array when there is no light present. We collected multiple snapshot frames (i.e., a frame is a full 

set of 64×64 measurements from the FPA from one moment in time), and then averaged them 

together to generate an estimate “dark” frame, fdark, as seen center in Fig. 3-8. With the average 

dark frame, we can now approximately remove the noise due to dark current by subtracting fdark 

from each collected frame of data. Denoting  fi as the ith data frame, the adjusted data frames are 

simply calculated as  

 

fi,adj = fi – fdark.                 (1)   

 

The right panel of Fig. 3-8 shows that summing of the adjusted data frames fi,adj effectively 

removes the noise due to dark current. 

 

 

Using the virtual detector geometry we have been describing and the method for manually 

determining the optical boundaries of each virtual channel we began some experiments in multi-

channel anomaly detection.   Figure 3-8.1 below show 8 x 8 virtual channel reconstructions of a 

star target scene and that same scene in which have been injected a handful of bright laser spots. 

Fig. 3-8.1(a) contains the background image, while Fig. 3-8.1(b) contains the bright anomalies. 

Looking at the top row of sensors in the anomaly image, counting from the left, the first ROI is 

“Detector 1”, the second ROI, “Detector 2”,  has a long diagonal streak, the third ROI, “Detector 

3” has a speckle pattern with 3 small Gaussian objects, and the fourth ROI, “Detector 4” has a 

single small Gaussian object recovered. We used data from Detector 3 to exercise our anomaly 

detection algorithms.  
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                                                   (a)                                                                                  (b) 

Fig. 3-8.1. Recovered images from multi-pixel experimental data.  There are 64 regions of 

interest. (a) The no-anomaly background scene anomalies, and (b) the scene with anomalies. 

 

 

From the Detector 3 data we have extracted the measurements corresponding to Sets 1, 2 and 6 

of the complementary blocks shown in Fig. 2-8 of Section 2.Using these measurement blocks, 

we have run the anomaly detection algorithm on the data with and without anomalies.  Fig. 3-8.2 

shows the signal, z-score, MMD and Anomaly Indicator graphs created from the actual DVC 

camera measurements. The results show that all Sets 1, 2, and 6 of complementary PC signature 

blocks detect the 4x4 and 2x2 anomalies appearing in the ROI.    

 

  
(a)                                                                       (b) 



Approved for public release; distribution unlimited.   
Report developed under Topic #A2-5466, contract W911NF-14-C-0006 DATA RIGHTS: IAW DFARS 252.227-7018(f).  
  Page 39 of 74 

ARMY STTR-A2-5466 Rapid anomaly detection and tracking via compressive time-spectra measurement 

 

 
 (c) 

Fig. 3-8.2.  Anomalies appearing in Detector 3’s ROI (shown as a picture in Fig. 3-

8.1(b)) are detected using Partial Complete block sets 1, 2 and 6 of complementary 

signature blocks (shown in Fig. 2-8).   

 

3.5 PSF Development for Multi-pixel Calibration 

 

3.5.1 Raster-scan for Point Spread Function Measurement 

In order to get rid of optical distortion and enhance the joint reconstruction of data from multiple 

sensors without resorting to tedious manual mirror-to-FPA mapping,  we have implemented a 

point spread function (PSF) that mathematically describes system pixel geometry and aberrations 

in a matrix formulation that can be experimentally calibrated and used directly in the 

optimization procedure. A mathematical model of the PSF-aware measurement and optimization 

process is given in Appendix 3-1.  The reconstruction algorithm fuses an array of smaller images 

together by making use of the optical system’s PSF. The mathematical model of the blurring PSF 

operator is separated from the sensing patterns as an independent matrix so that measurement 

patterns maintain an associated fast transform method and the proposed reconstruction algorithm 

can be implemented in a fast and efficient way. 

 

It is straightforward to experimentally obtain the PSF matrix by raster-scanning groups of 

mirrors on the DMD and acquiring an image of each “point” on the detector array.  In this way, 

each image contains local PSF information. This local information arranged in corresponding 

rows of a large matrix, where each row represents a raster pattern on the DMD. To make the 

process faster, a multi-pixel raster is achieved by dividing the whole DMD into number of blocks 

where each block has its own raster-scan operating in parallel with the others. One critical thing 

is that the blocks should be big enough so that light blur between any two raster points not 

overlap with each other.  Fig. 3-9 depicts the single and parallel raster methods. 



Approved for public release; distribution unlimited.   
Report developed under Topic #A2-5466, contract W911NF-14-C-0006 DATA RIGHTS: IAW DFARS 252.227-7018(f).  
  Page 40 of 74 

ARMY STTR-A2-5466 Rapid anomaly detection and tracking via compressive time-spectra measurement 

 

 
Figure 3-9. (a) Conventional raster-scan method, the red line represents how the PSF of the DMD pixel 

moves on the detector array.(b) Multi-pixel raster-scan method, one pixel within multiple blocks are lighted 

to perform the parallel raster-scan 

 

 

We have collected calibration and imaging data using these procedures and have processed the 

results using the PSF methodology along with other methods to create a calibration matrix that is 

used in the image optimization process, as described next.  The results have shown reduction in 

image distortion obtained within the image optimization process without added post-processing 

steps.  

 

Following the notatioin in Appendix 3-1, the overall PSF matrix, Q, is the product of Qvirt and 

QFPA, where Qvirt is the response of the FPA from coarse rastering (e.g., groups of 64×64 mirrors) 

of the DMD, and QFPA is the response of the FPA from fine single-mirror rastering of the DMD. 

The challenge with rastering just a single mirror is that not much light is received, and thus the 

SNR is very low. We have worked to optimize several aspects of our measurement process to 

ensure a high photon count, and thus a relatively good SNR. 

 

Below are figures with the results from the single-mirror rastering. Fig. 3-10 shows the full raster 

data in its 1-D vectorized form. The active portion of the DMD is 512×512 = 262,144 mirrors; 

thus we have 262,144 total raster measurements.  

 
                                         (a)                                                                               (b) 
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Figure 3-10. (a) Single-mirror raster data made by turning only 1 mirror to the on position on the DMD and 

measuring the response of the single-mirror illumination on the detector array. (b) Single- mirror raster data 

reshaped into its 2-D image form reconstructs a view of the DMD from the point of view of the detectors. 

 

Fig. 3-10(b) shows the raster data reshaped into its 2-D image form. Here we can see that 

illumination of the FOV is not uniform, with the brightest region in the center. Thus, the middle 

section of measurements in Fig. 3-10 (a) has larger values than the beginning and end. Further, 

the dark spot in the center of Fig. 3-10 (b) clearly corresponds to the dip in intensity in Fig. 3-10 

(a).  It is interesting to observe the apparent periodic structure in Fig. 3-10 (b), which looks 

somewhat like graph paper. Note that this image is actually a view of the DMD as seen through 

the “eyes” of the FPA’s 4096 detectors. Therefore, we believe that the dark lines are due to the 

light that is lost in between the detectors.  

 

Improvements in experimental imaging results using the PSF-aware algorithm are shown in the 

images below. Fig. 3-11 shows the results of a simulation where a noiseless ground truth image 

was “corrupted” using the optical distortion information from the PSF and then used as the scene 

for PSF-aware measurement and reconstruction. This simulation shows the potential for 

correcting the distortion incurred by the optical system’s PSF.   

In Fig. 3-12 we see image reconstructions taken from our 64×64 multi-pixel camera partitioned 

into 8×8 array of 64 virtual channels. In panel (a) we see each virtual channel independently 

reconstructed and stitched together to form the original FOV. However, panel (b) shows the 

result of using the same exact measurements with our PSF-aware reconstruction algorithm. 

 

 

 

    
Figure 3-11. Simulated PSF-aware reconstruction (a) ground truth,  (b) optically distorted image created 

from PSF data showing skew and virtual boundary artifacts, and (c) improved PSF aware reconstruction 
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                                            (a)                                                                 (b) 

Figure 3-12.  A total of 64 virtual channels were reconstructed (a) without and (b) with the PSF-aware 

partial-complete algorithm.  Considerable improvement to artifacts at the boundaries of the virtual channels 

was achieved. 

 

We next describe the PSF approach for reconstructing data sets using PC with a goal of 

optimizing experimental performance, and also begin implementation of MMD and Z-Score 

algorithms for event detection.   

 

3.6 Focal Plane Array (FPA) anomaly detection 

 

As proposed, we are implementing anomaly detection on a focal plane array (FPA) to address the 

limitations of SPC system. We are using a 64 x 64 Hamamatsu InGaAs FPA, which is sensitive 

to short wave infrared (SWIR) wavelengths.  With the FPA each detector in the FPA acts as a 

SPC system, but sees a smaller region of interest (ROI).  Smaller ROIs have several advantages 

including the ability to detect fainter anomalies and also be able to detect and locate multiple 

anomalies appearing simultaneously. By working in parallel, multiple smaller ROI’s also 

produce faster operation. Using virtual channels allows us to control the ROI size on the DMD 

algorithmically, and without hardware changes. 

 

During our preliminary test of the FPA system, we found that because of imperfections in the 

relay optics and the Scheimpflug effect of the digital micro mirror (DMD), the projected image 

from DMD to the FPA is blurred and skewed; these are conditions that will affect the detection 

performance of the system.   Although we cannot currently correct for the effect of these optical 

distortions in the detection step as we did in the reconstructed images described above, we can 

still incorporate the PSF into our simulations in order to generate more realistic results. We 

implemented the PSF in anomaly detection using the FPA virtual channel geometry and 

investigated detection performance in the ideal case and the non-ideal measured PSF case. 

In this simulation, the PC patterns we put on the DMD for each virtual channel have a local 

resolution of 64 x 64 mirrors and are duplicated across the DMD resulting in a 512 x 512 total 
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resolution. In the ideal case, the virtual channels are groups of 8x8 FPA pixels that are binned 

into a single virtual detector.  This results in an ideal virtual FPA comprising a total of 64-

channels arranged as an 8x8 array of 64 virtual detectors, where each of the channels receives a 

signal from a block of 64 x64 mirrors on the DMD.  Fig. 3-13 shows which pixels on our 64×64 

FPA constitute virtual channel 12. In panel (a) we see the exact group of 8×8 pixels that 

correspond to the ideal case, while in panel (b) we see that in reality, the PSF causes some 

distortion and skew. Note that the non-ideal PSF of the system was carefully measured using the 

scanning procedure described above. 

 

 
Figure 3-13. Virtual channel #12 with ideal PSF and measured PSF 

 

We conducted an anomaly simulation using a video dataset of resolution 512 x 512 pixels that is 

consistent with the real multi-pixel camera. The scene is an urban highway as background with 

vehicles moving across (Fig. 3-14). Ideally, the image on the FPA is an exact replica of the 

original image scaled down by demagnification, as seen in Fig. 3-15(a). However, Fig. 3-15(b) 

shows that in reality the image on the FPA is skewed and blurred. Fig. 3-15(c) shows how the 

virtual channels appear after grouping the pixels of the FPA together. 

 

 
Figure 3-14. Ground truth of one frame from the test movie set. 
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Figure 3-15. Image on the FPA, with different PSF. (a) has the ideal PSF with no 

distortion and blur, (b) is measured image from real world FPA, (c) is the 8 x 8 virtual 

channels that grouped from the measured FPA image. 

 

As discussed in previous reports, the PC patterns have the advantage over random permuted WH 

patterns, as it can be categorized into blocks of different modes that share a unique signature, 

some of which will have a bigger response to anomaly of particular size. We ran simulations 

with a 4×4 anomaly appearing in the middle of virtual channel 1, in the top left corner of the 

FOV, as sen in Fig. 3-16. We used 100% of the PC patterns in the previously selected “optimal” 

group of complementary blocks Ɓ36,Ɓ38,Ɓ52,Ɓ54. The intensity of the anomaly was 2000 versus 

the image’s maximum intensity of 255; roughly 8 times brighter. Noise was added to the test 

data set to simulate the real world experiment, and here we start with a SNR level of 15.   

 
Figure 3-16. Ground truth of the anomaly (left) and the ROI perspective from virtual channel 1 (right). 
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Figure 3-17. Anomaly detection results with the ideal PSF (left) and measured PSF (right) in virtual channel 1. The 

distorted image gives less signal of the change detection. 

 

In simulation, we found that the detection signal of the anomaly is slightly higher in the ideal 

PSF case than the measured PSF one (Fig. 3-17).  We also ran other simulations with different 

anomaly intensity, different SNR and different virtual channels, all of which have similar results 

(Figs. 3-18 through 3-20). 

 

 
Figure 3-18. Detection result of anomaly with different SNR in virtual channel 1, the anomaly intensity is also set to 

1000 
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Figure 3-19. Ground truth of the anomaly (left) and the ROI perspective from virtual channel 20 (right). 

 
Figure -3-20. Anomaly detection result from another virtual channel (channel 20), the detection is slightly different 

compare to other channel, but the blur and skew affects the detection performance the same way. 

 

 

We also simulated the scenario where an anomaly appears at the edge of a virtual channel ROI. 

Fig. 3-21 shows just the ground thruth ROI for virtual channel 20 with the anomaly located in its 

top-left corner. The crosstalk between FPA detector and image distortion will significantly affect 

the detection result as shown in Fig. 3-22. 
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Figure 3-21. Ground truth of an anomaly locates on the upper left corner of virtual channel 20’s ROI. 

 
Figure 3-22. Due to the cross talk between virtual channels in the real world experiment, the simulated anomaly 

detection with measured PSF shows a significant low SNR, almost 5 times less than the ideal PSF case. 

 

As mentioned earlier, one merit of using a FPA to detect an anomaly is that each detector “sees” 

a smaller ROI and thus an anomaly of a given size will have a bigger impact on detection as 

compared to the SPC. The next simulation confirms this expectation. 

 
Figure 3-23. The detection signal of using different methods, SPC and FPA. The FPA virtual channel has a 

significant improvement on SNR as each detector collects signal from a smaller ROI and the anomaly will have a 

bigger impact on the measurement. 
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Figure 3-24. ROC and PR curve for SPC and FPA anomaly detection results. The FPA method elevates the 

performance under these metrics, especially for the PR curve. 

 

A comparison between our previous SPC simulation result and this FPA implementation is made 

and illustrated inFigs. 3-23 and 3-24. Fig. 3-23 shows the detection signal increases significantly 

with our FPA strategy. Even with the non-ideal imaging conditions, the detection SNR is still 

better than the SPC result. ROC and PR curves in Fig. 3-24 are included to illustrate the 

significant improvement under different detection metrics, especially for the PR curve. 

 

The FPA anomaly detection method also has the ability to handle scene with high noise level, the 

next simulation shows the method is able to detect anomalies at a SNR level of 5, but fail to do 

so at the level of 2, as shown in  Fig. 3-25. 

 
Figure 3-25. Simulation results to test when the anomaly detection using FPA fails under different noise level  
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Appendix 3-1    PSF-aware reconstruction algorithms for imaging:    
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Section 4. Anomaly Detection Demonstrations and Results 
 

Sections 2 and 3 discuss the theory of the algorithms and mathematics we have developed for use 

in our single-pixel- and FPA cameras, as well as some of their implementations. In this section 

we describe in more detail the wide range of computer simulations and laboratory experiments 

we have conducted and interpret their results. 

 

The key to designing a robust detection system is finding its optimal operating point. Toward this 

end, we conducted extensive experiments to discover the behavior of our system. Detecting an 

anomaly is a binary classification process. Therefore, in essence, these experiments were 

calibration tests to find the optimal operating threshold for different scenarios with which to 

make binary decisions. Finding the optimal operating threshold is the main theme of this section. 

 

4.1 Simulation scenarios 
We begin with a series of simulations of anomaly detection on a video set. The video frames 

consisted of two toy cars moving toward each other in the foreground. The background consisted 

of a static colored checkerboard and Newton’s cradle, which contains swinging metal balls; this 

represented the “steady-state’ motion of the background.  

 

The simulations tried to match a real-world camera setup: the scene was modulated with binary 

DMD patterns. In the case of the SPC, the modulated frame was then summed to a single value; 

in the case of the multi-pixel camera, the modulated scene was first convolved with the measured 

PSF function and then the ROI corresponding to each virtual channel was summed to a single 

value. Examples of testing scene are shown in Fig. 4-1.  
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Figure 4-1. From left to right are three frames of scene images (256 × 256) showing two toy cars moving towards 

each other. In (b), a bright pixel-block of size 4 × 4 in the background represents an anomaly point. 

 

The simulation parameters used are also matched to the experiment. For example, we assumed 

that the DMD was running at a speed of 15 kHz. We used frames from a video sequence with an 

assumed rate of 30 frames per second. Thus each frame of the scene is modulated and measured 

15000/30 = 500 times before the next frame. Hence for a 128×128 resolution scene, the 

compression ratio will be 3%, and for a 256×256 resolution the ratio is 0.7% which represents a 

high compression ratio. 

 

4.2 Statistical inference 
In the simulation, we repeatedly modulated the scene with patterns designed for anomaly 

detection and formed the data by summing up the post-modulated image. When the anomaly was 

present, the measurements showed different statistics as compared with the case without 

anomaly; this was quantified, in part, by the MMD part of our change detection algorithm. Given 

the acquired time series measurements {bj} from the selected modulation patterns, the metrics 

were calculated through the following steps: 

 

1. We calculate the change, 𝑧𝑗 = ∑ |𝑏𝑗+𝑀+𝑘 − 𝑏𝑗+𝑘|
𝑀

𝑘−1
, where M is the number of patterns 

in this selection. This purely records the difference of measurements between the current 

set of patterns and the previous set of patterns. 

2. Then we use a window of size W to slide through the change series with one step at a 

time. For each window, we calculate the standard score (Z-score) from the two nearest 

non-overlapping window. The ratio of the mean value of the difference between those 

two windows and the smaller variance of the changes within two windows forms the Z-

value. 

3. Based on the changes, we calculate the maximum mean discrepancy (MMD), which is 

used to identify whether a data are from the same or different probability distributions. 

4. The product of Z-score and MMD score generates our change detection score. 

5. The change detection scores are also a time series of data points. At every given moment 

of time we say that an anomaly has occurred if the change detection score is above a 

predetermined threshold. 
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We made an interesting observation of the time series of change detection scores: There is 

always a secondary negative spike that follows an anomaly signal spike. This phenomenon is due 

to the sliding window that is part of the calculation process: we compare a section of data of 

length W to the same length of data that are k steps before it. Therefore, a negative spike always 

occurs W points after true signal spike. This can be used as extra information for us to determine 

whether the signal is a true positive or not by looking for the secondary spike and pair spikes. 

 

 

4.3 Simulation with different detection matrix 
There are many types of measurement patterns that can be used in conjunction with the DMD to 

detect anomalies. We studied patterns from the following three types of matrices and compared 

their detection capabilities: 

 

 Sum-To-One transform (STOne), 

 Permuted Walsh-Hadamard transform (WH),  

 Partial-Complete Hadamard transform (PC). 

 

Each transform matrix possesses unique properties. The permuted WH matrix contains columns 

that have been randomly scrambled, which destroys its strong sequency structure; the result is 

that the pattern contained in each row has been reduced to a pseudo-random binary noise 

waveform. Further, the rows are randomly chosen so that there will be minimum coherence 

between modulation patterns. 

 

In terms of the STOne matrix, we conducted a mathematical study that showed how it is actually 

equivalent to a Sylvester- or Walsh-Hadamard matrix. Yet at the same time, due to a 

deterministic sequence of permutations and inversions of its rows and columns, the STOne 

matrix has the appearance of being random, or incoherent with respect to the bases that sparsify 

images. The STOne matrix is also able to generate low-resolution previews instantly from very 

few measurements, which can be of benefit in compressive image and video reconstruction.  

 

However, both the permuted WH and STOne patterns “democratically” modulate an observed 

scene and do not possess any bias or preference on the prior information of an anomaly. That is, 

their measurements have near-constant magnitude with little deviation. Fig. 4-2 shows the 

magnitude of change detection plots from a simulation using both WH and STOne patterns on 

the DMD. The spikes in the change plot indicate an anomaly appearing or disappearing. It is 

clear that their change detection performance is virtually identical. 
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Figure 4-2. Anomaly detection results using the change plot for both WH and STOne, the spikes in the plots indicate 

the appearance and disappearance of the anomaly. Note, that these graphs show the absolute value of change, which 

rectifies the negative spikes to be positive. 

 

Due to the sliding window in calculating the change value, each spike will be accompanied by a 

secondary spike delayed by the length of the detection window size W. In most case the 

secondary spike is negative. The magnitude of the spikes can be also be used to indicate the 

effectiveness of the detection respect to the anomaly intensity to background illumination ratio: 

as the intensity ratio increases, intensities of the spikes become larger. When the anomaly 

becomes dimmer, at some point it will not be able to be detected by the algorithm and the 

number of false positive spikes will be dominate. We found that the detection capability of WH 

and STOne to be very similar as illustrated in Fig. 4-2. Further, they sometimes had poor 

performance when the signal-to-background illumination ratio (SBR) was low. 

 

The SBR is a metric we developed to quantify how bright an anomaly is relative to its 

background: 

     𝑆𝐵𝑅 =
∑pixels in region with anomaly

∑pixels in same region without anomaly
      (4-1) 

 

Now we examine the Partial Complete algorithm and analyze groups of signature blocks in the 

Partial-Complete Hadamard spectrum. For a scene modulated by DMD with N pixels, we split 

the Hadamard domain into F = 4
K
 non-overlapping blocks, with B = N/F measurements per 

block. An important dual feature is that the pixel domain is partitioned at the same time into B 

non-overlapping tiles, each of size 2
K
×2

K
 pixels. In this case the test scene has pixels of N = 

256×256 = 2
16

 pixels and F = 64 blocks (labeled as Ɓ0, … , Ɓ63)
12

, which results in B = 2
10

 = 

                                                 
12

 Similar to STOne, the Partial-Complete schema can also generate coarse previews based on a limited set of 

measurements. For example, in the case of F = 64 a coarse preview with 8×8 tiles can be constructed by obtaining 

the measurements of block Ɓ0. Finer resolution previews can also be generated by gathering measurements from 

blocks Ɓ4,Ɓ32,Ɓ36, etc. 
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1024 measurements per block in the Hadamard domain; in the pixel domain this results in B = 

2
10

 tiles partitioning the FOV, where each tile contains 8×8 pixels. 

 

In previous studies we showed that the Hadamard spectrum of an anomaly appearing in an 

arbitrary location within an 8×8 tile of pixels was essentially the same regardless of which tile in 

the FOV. That is, there is a strong periodicity induced in the pixel domain by the structure of the 

Hadamard waveforms as a result of their Kronecker product structure. Thus it suffices to 

examine any 8×8 tile. 

 

We noticed that certain groups of four blocks Ɓk in the Hadamard domain were complementary 

in the sense that they covered up nulls in the measurements corresponding to specific locations 

within an 8×8 tile of pixels. Nulls in the measurements are undesirable since an anomaly 

corresponding to that location could result in it not being detected, i.e., a false negative. 

 

It is helpful to view the energy of the PC Hadamard spectrum with and without an anomaly. For 

example in Fig. 4-3, 64 blocks of coefficients are plotted, where it is clear that some blocks show 

a bigger response when an anomaly is present. If one chooses blocks that have small response to 

an anomaly, it will probably be missed.  

 

 
Figure 4-3. Examples of spectrum when varying the location of the anomaly, with x-axis being the block number 

and y-axis being the coefficients. The anomaly locations are also shown in the top of each graph. 

 

This motivated us to investigate which blocks fully covered, or spanned, the possible anomaly 

locations within an arbitrary partitioned 8×8 patch in the FOV. Our analysis discovered several 

sets of complementary groups-of-four signature blocks, which are shown in Fig. 2-8 of Section 

2. The patterns from these block sets can maximize the anomaly response, providing better 

detection results.  

 

For example, let us consider the group Set 2 consisting of blocks Ɓ36,Ɓ38,Ɓ52,Ɓ54. The signature 

of block Ɓ36 shows a checkerboard pattern composed of solid 4×4 square areas of the same size 

as our test anomaly. The signatures for blocks Ɓ38,Ɓ52,Ɓ54 are simple 2-pixel cyclic shifts of the 

signature for Ɓ36 in the horizontal and vertical direction. We observed that the nulls locations for 

the patterns of block Ɓ36 are fully covered by the union of the patterns in blocks Ɓ38,Ɓ52,Ɓ54. To 

better visualize this, we simulated a 4×4 anomaly in different locations and then averaged the 

energy of the measurements from each block. Fig. 4-4(a) shows the observed scene, where the 

red dotted rectangle indicates the locations that we rastered the anomaly through. Figs. 4-4(b)–
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(e) show how the average measurement energy for blocks Ɓ36,Ɓ38,Ɓ52,Ɓ54 change as a function 

of the location of the anomaly. The dark areas are nodes, or minima, that are undesirable. 

However, comparing the subfigures, we see that for every minima, there exists a maxima in that 

same location in a different block. To be sure that we cover all locations we averaged Figs. 4-

4(b)–(e). The result is shown in Fig. 4-4(f), where the blue nodes no longer exist.  

 
Figure 4-4. Examples of nodal patterns (darkest regions) as a function of anomaly location indicated by the red 

dashed region of the scene in (a) for different signature blocks. (b) Block Ɓ36. (c) Block Ɓ38; (d) Block Ɓ52; (e) 

Block Ɓ54; (f) The average of blocks Ɓ36,Ɓ38,Ɓ52,Ɓ54 shows the nodal locations have been covered. 

 

Next we wanted to see how the change detection algorithm performed when using PC 

measurements as compared to permuted WH measurements. In the following simulation, we 

fixed a 4×4 anomaly at an arbitrary location in a 256×256 scene, and then compared the change 

detection algorithm using measurements from PC signature blocks Ɓ36,Ɓ38,Ɓ52,Ɓ54 versus 

measurements from randomly selected permuted WH patterns. Fig. 4-5 shows that the chosen PC 

signature block sets result in a significant improvement over permuted WH in detecting a 4×4 

anomaly at this arbitrary location. Combining this result with the previous simulation, suggests 

that we can safely generalize this to conclude that this should be true for any location. Fig. 4-5 

also shows the detection performance under different SNR conditions. This demonstrates that the 

proposed approach has a better chance to detect a low-intensity anomaly. 

 

Block 36  
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Block 54  

Example frame 

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 



Approved for public release; distribution unlimited.   
Report developed under Topic #A2-5466, contract W911NF-14-C-0006 DATA RIGHTS: IAW DFARS 252.227-7018(f).  
  Page 57 of 74 

ARMY STTR-A2-5466 Rapid anomaly detection and tracking via compressive time-spectra measurement 

 

 
Figure 4-5. The change detection using permuted WH and PC block sets with different noise add to the simulation 

frames. In all scenarios the PC approach outperforms permuted WH. 

 

 

4.4 ROC and PR curve 
Evaluating the detection performance by merely looking at the change graph is insufficient and 

possibly misleading. As such, we decided to use the well known receiver operating 

characteristic (ROC) and precision-recall (PR) graphs as our comparison criteria. These metrics 

gave us the ability make more quantitative comparisons between the different methods. They 

were defined in Eqs. (2-8)–(2-10). 

 

As discussed in Section 2, PR is a better metric when dealing with strongly skewed positive and 

negative events such as anomalies. We can plot a PR curve, which is a collection of operating 

points, each with an associated threshold to make a binary decision. However, determining the 

best operating point is a difficult decision since it is not always clear how to balance the 

variables of precision and recall. 

 

There exist many ways to determine an optimal operating point such as area under the curve 

(AUC), the F-score and the G-measure. The AUC simply finds the area of the rectangle from the 

origin to a particular point on the PR curve. The rectangle with the largest area associated with a 
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particular point on the PR curve maximizes the combined contribution of the precision and 

recall. Similar to this is the G-measure, which is the geometric mean of precision and recall. The 

F-score is harmonic mean of precision and recall, and is more conservative than the AUC or the 

G-score. We decided to use a more general form: the Fβ-score is just the β-weighted-harmonic 

mean of precision and recall: 

 

    𝐹𝛽 = (1 + 𝛽2)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
.     (4-2) 

 

A larger value of β puts more importance on recall, while a smaller value deems precision as 

more essential. We evaluated our system for the common values of β = 0.5, 1, 2. Note that the 

regular F-score occurs when β = 1, where the precision and recall are evenly weighted. 

 

4.5 Anomaly detection experiment with SPC 
With the simulation results showing the advantage of using PC signature block sets as detection 

patterns we then constructed a physical tests. A big merit of the anomaly detection system is that 

it can be implemented with the original SPC setup without significant modification. This also 

allows the anomaly detection function to be realized on the InView SPC camera devices that are 

compact and portable with all the optics and analog to digital conversion (ADC) electronics 

integrated as a whole system.  

 

The InView camera uses a Texas Instrument DMD chip (DLP7000) with a resolution of 

1024×768 to modulate the scene. The DMD has a maximum operation speed of 18 kilohertz and 

has a wide spectrum range of reflection, from 400 nm to near Infrared (NIR) of 2000 nm. The 

micromirrors are 13.6 μm on the diagonal and rotate on an axis to two angles. The DMD is put at 

the location where the image plane of the scene is, and a total reflection (TIR) prism is used to 

channel one direction of the reflected light into a path where other optics elements are set to 

project the scene into light collection devices, in this case, a single detector. The scene we tested 

was a toy car being dragged through a printed background with a constant speed; the background 

is a gray scale image of a parking lot and buildings. The photon collection device was a Thorlab 

(PDA36A) silicon detector with a maximum readout speed of 5 kilohertz at 70 dB noise 

reduction option, and an effective detecting spectrum range from 400 nm to 1000 nm (Fig. 4-6), 

which covers the whole visible wavelength.  
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Figure 4-6. Spectrum response of Thorlab PDA36A single detector 

 

 

We used a red laser pointer as the anomaly, which has a wavelength of 700 nm. And has a 

maximum intensity of 5mW/mm
2
. The scene with and without the anomaly is shown in Fig. 4-7. 

The intensity curve in Fig 4-7(c) is plotted from the image intensity values along the line drawn 

across the scene in Fig 4-7(b). The intensity curve shows anomaly intensity respect to the 

background and foreground illumination intensity. 

 

 
Figure 4-7. Ground truth of the testing scene with (b) and without (a) the anomaly. (c) shows intensity profile across 

the line in (b) that pass through the anomaly. 
 

4.5.1 Laser triggered anomaly control system 

In order to obtain the ROC and PR curves we need to synchronize the measurements with the 

ground truth of the anomaly. We also developed a laser triggering system that verifies the 

synchronization between the laser trigger ground truth and the anomaly measurement data. 
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Figure 4-8. 2-channel Relay set used to precisely control the appearance of a laser anomaly in anomaly detection 

experiments. 

 

 

The trigger system is realized using a two-channel relay set (SunFounder 2 Channel 5V Relay) 

like the one shown in Fig. 4-8. A relay is an electrically operated switch and is used where it is 

necessary to control a circuit by a low-power signal (with complete electrical isolation between 

control and controlled circuits such as TTL or ADC voltage output), or where several circuits 

must be controlled by one signal. In our experiment, the relay set has two channels: one controls 

the laser as anomaly and the other controls the motor that pulls the car moving across the scene. 

Fig. 4-9 shows the measurement data and the laser trigger ground truth obtained from the 

National Instrument analog and digital conversion device. We can see that the trigger edges of 

the laser match well with the light intensity increase in the measurement data. 

 

 
Figure 4-9. A comparison between the laser trigger ground truth (red) and the measurement data (blue), the DMD 

is running random Walsh-Hadamard pattern at 1 kHz. 

 

 

The relay system allows us to control the anomaly event precisely, providing confidence that 

consistency with measurements can be achieved even with a small SNR. Fig. 4-10 displays a 
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repetition of two experiments with the exactly same parameters, and the measured triggers 

shows reliable consistency. 

 
Figure 4-10. Measurements of two laser trigger signals with the same parameters.  

 

 

With the functional laser trigger system, we are able to run the anomaly detection experiment 

with known trigger edge and repeatable experiment conditions, which allows us to generate the 

ROC and PR curves. 

 

4.5.2 Experiment results and discussion  

As discussed previously, we have found that using the PC Hadamard patterns with particular 

signatures will provide higher SNR in detecting anomalies. In this experiment we use the 

signature block combination of Ɓ36, Ɓ38, Ɓ52, Ɓ54, with 100% patterns in each block, so the 

total number of patterns is 4096. The DMD is running at 2000 frames per second and the 

patterns are repeated 10 times. The toy car is also moving across the scene, as shown in Fig. 4-

11, where the anomaly size is around 4×4 in a 256×256 scene. 
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Figure 4-11. An example image of the scene, the anomaly is zoomed in and the toy car is moving across the scene 

during the experiment. 

The laser anomaly is turned on and off three times in each measurement. The experiment is run 

with the anomaly in 10 different locations to ensure that it will be covered by all four 

signatures. Fig. 4-12 shows the data from the fifth trial along with the laser trigger curve. 

 

 
Figure 4-12. Raw measurement data of anomaly location #5, the anomaly appeared three times (red), which can 

also be seen from the intensity increase in the measurement (blue). 

 

 

Fig. 4-13 shows the change detection results of anomaly locations #5 and #8. As usual, the 

change detection algorithm is the product of the Z-score and MMD. The red spikes indicate 

when the laser anomaly was actually turned on or off; these are the positive events to be 

detected. The blue spikes indicate high scores output from the change detection algorithm, i.e., 

what it has calculated as a positive event. When a blue spike coincides with a red spike we 

register a true positive, and when it does not we register a false positive. 
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Figure 4-13. the change detection result of two different anomaly location (location 5 and 8). Each detection has 

the anomaly turned on and off three times (red). The change detection is combination of Z-score and MMD. 

 

 

With the laser trigger ground truth we obtained confusion matrices using the perfcurve 

function in MATLAB at different (but common) thresholds for the different 10 change 

detection trials. For each threshold we then computed an average the confusion matrix for the 

10 different anomaly locations. The resulting average ROC and PR curves are shown in Fig. 4-

14. 

 

  

 
 

Figure 4-14. Average ROC curve and associated PR curve. 
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We are now able to compare the anomaly detection performance between the PC method and 

WH method through ROC and PR curves. Fig. 4-15 shows the detection result of the two 

methods under different noise level. As expected the PC method outperforms the WH approach 

in each case.  

 

 
Figure 4-15. ROC and PR curve plots for PC and WHT patterns under different SNR circumstances, the SNR is 

labeled at the top of each graph. 

 

 

4.6 Anomaly detection with FPA 

The previous experiments proved that the SPC system is feasible for high-speed anomaly 

detection. However it has some limitations too. The single detector collects all the light reflected 

from the DMD and it can be difficult to detect an anomaly that is very small or weak.. Even with 

our proposed PC patterns that are tuned to size of an anomaly, the SPC system’s performance 

suffers when the anomaly become too dim or the background illumination increases. Another 

disadvantage of the SPC anomaly detection system is its incapability of detecting the location of 

the anomaly in real time since the measurements are global, i.e., they record the full FOV.  

 

The measured data can be used to reconstruct the scene for the purpose of locating the anomaly, 

yet this process is computationally demanding and the reconstruction may take seconds for a 

high-resolution scene. In order to improve the anomaly detection system and overcome the 

limitations of SPC imager, we replaced the single detector with a Hamamatsu focal plane array 

(FPA) that consists of 64×64 Indium gallium arsenide (InGaAs) detectors. The FPA has a 

spectrum respond region of 700 nm to 2000 nm, with a maximum data readout speed of 1000 

hertz. Fig. 4-16 shows some sample images taken by the FPA.  
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Figure 4-16. Image captured by the Hamamatsu 64×64 Indium gallium arsenide (InGaAs) FPA. Note, there exist a 

few defective pixels at the bottom of the FPA. 

 

 

The FPA is places at the image plane of the DMD, and the optical system maps a 512×512 DMD 

region to the 64×64 pixel array. In the ideal situation we would like to use the data collected by 

the total 4096 detectors, where each detector on the FPA collects light from a block of 8×8 DMD 

mirrors. Smaller regions of interest (ROIs) will significantly increase the SNR of the anomaly 

compare to the SPC system where the single detector ‘sees’ the whole DMD area. 

 

4.6.1 Virtual channel  

As described in Section 2 we designed and created so-called “virtual channels” from the FPA 

pixels. There are many possible sizes for these channels, and they do not need to be square. 

However, the channel size must correspond to a portion of the DMD that can support a 

Hadamard pattern. We decided on ROIs that contained 64×64 mirrors–in part because it also has 

nice imaging capabilities–but also reported on 32×32, 16×16, and 8×8 ROIs in previous progress 

reports (note, factors of 12 are also permissible since a Hadamard matrix of that size exists). 

 

Smaller ROIs means fewer measurements are necessary. To be consistent with our simulation 

process we need at least a DMD ROI resolution of 64×64 for each detector in the 64×64 

Hamamatsu FPA, so a minimum of 4096×4096 resolution DMD is required to reproduce the 

results in the simulation which is unavailable with the hardware we have. With a 64×64 ROI, the 

FPA views a FOV with an array of 8×8 = 64 virtual channels. 

 

The virtual channel strategy has another benefit of fast processing speed. As currently we have 

limited computation power and data transmission bandwidth, it will take tremendous time to 

process the data from 4096 detectors without the help of parallel computing. An area of future 

research is to use all the detectors from FPA as their own channel. A comparison of data 

collected using the SPC and one particular FPA virtual channel (channel 20) is illustrated in Fig. 

4-17. The corresponding ROC and PR curves are shown in Fig. 4-18 to show the improvement of 

the FPA system. Note the significant improvement in the PR curve.  
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Figure 4-17. The detection signal of using different methods, SPC and FPA. The FPA virtual channel have a 

significant improvement on SNR as each detector collects signal from a smaller ROI and the anomaly will have a 

bigger impact on the measurement. 

 

 

 
Figure 4-18. ROC and PR curve for SPC and FPA anomaly detection results. The FPA method improves  the 

performance under these metrics, especially for the PR curve. 
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4.6.2 Point spread function correction to the imaging system 

As discussed in Section 3 we also measured the point-spread function (PSF) of our optical 

system and used it to correct the distortion of the image on the FPA. The PSF describes the 

response of an imaging system to a point source or point object. We were able to use the 

information contained in the measured PSF to correct for errors in the recovered image generated 

by our reconstruction algorithm. However, using the PSF to remove or “un-mix” the distortion 

directly from the compressive measurements is not straightforward or entirely obvious, and adds 

a significant computational burden that is undesirable. This is a good area of future research. 

 

 

4.6.3 Anomaly detection results with FPA and discussion 

We now discuss the final performance of our anomaly detection system. Recall that the goal was 

to find an ideal operating point for a given observed scene. We performed a series of laboratory 

experiments to discover the behavior of our system. The same steps would be done in whatever 

environment the camera is operating in. The overall flow of data was 

 

 Take compressive PC measurements of the scene with and without anomalies 

 Feed them into the detection algorithm 

 Generate confusion matrices and PR curves 

 Find ideal operating point and its associated threshold using the Fβ-score in Eq. (4-2) for 

a user-defined value of β. 

 

We considered several testing situations that consisted of different anomaly intensities and 

durations. Specifically, we considered anomaly intensities of 980, 480, 280 μW, and durations of 

150, 60, 25 ms. Therefore, there were nine (9) different cases to judge. For each case we 

performed the anomaly detection process in ten (10) arbitrary locations within the ROI of one 

particular virtual channel and generated average ROC and PR curves as described in Section 4.5. 

 

We used the Fβ-score to find the optimal operating point for each case. Fig. 4-19 shows the 

summary of the calculated maximum Fβ-score for each of the 9 cases for values of β = 0.5, 1, 2. 

Fig. 4-20 shows the associated threshold for each of these operating points. We see from the 

plots in Fig. 4-19 that the maximum Fβ-score decreases as the anomaly intensity decreases. This 

makes sense since our precision and recall are directly tied to the SNR of the anomaly. It also 

makes sense that the associated thresholds also decrease with anomaly intensity since resulting 

detection scores will be smaller for relatively weaker anomalies.  

 

It is interesting to note that the detection results summarized by the maximum Fβ-scores in Fig. 

4-19 were not significantly affected by the anomaly’s duration. For each intensity, the shortest 

duration (25 ms) was 6-fold briefer than the longest (150 ms), yet the maximum Fβ-scores did 

not change very much. This may be an indication of robustness of our method. A future area of 

research is to investigate how system to push our system to a breaking point. Doing so can free 
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up other factors and constraints in our system that we can trade for the ability to detect very brief 

events. 

 

 

In terms of the effect of the β weight, comparing thresholds for β = 1 in Fig. 4-20, we see 

resulting lower thresholds for β = 2. A lower threshold means more events will pass the binary 

test at the expense of precision. In the other direction, for β = 0.5, we see higher thresholds, 

which results in more conservative detection of the anomalous events. 

 

 

 

 
Figure 4-19. Maximum Fβ-score calculated for β = 0.5, 1, 2 from the PR curve results. Each color bar corresponds to 

an anomaly of different intensity and duration indicated by the x and y axes. 

 

 

 
Figure 4-20. Detection thresholds determined by the maximum Fβ-score in Fig. 4-19. 

 

 

 

Given that we have determined the ideal operating point and threshold from the Fβ-score, we are 

interested to see how well it performs for anomalies that are not necessarily in the 9 cases used 

for calibration. We tested the camera’s detection ability for anomalies with arbitrary intensities 

and durations. Fig. 4-21 shows the raw compressive data stream and the change detection scores 
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for 9 different test cases. The change detection graphs also contain a red line which is a threshold 

gleaned from the calibration steps of Fig. 4-20. Instead of the anomaly’s absolute intensity, we 

measured its SBR (see Eq. (4-1) above). This is a relative metric that can be helpful to extend the 

results to different operating scenarios. 

 

In general, we discovered that the detection algorithm usually correctly classified an anomaly 

with different intensities and durations as long as the SBR was above 1.02. Further for the gven 

thresholds most of the false positives were avoided. However, as the anomaly’s intensity got 

weaker and duration briefer we found the detection change contained mostly noise. Therefore, no 

matter what threshold we chose either the false positive rate was 100% or we had a true positive 

rate or 0%. However this is not due to the incapability of the detection algorithm or threshold 

determination method. Rather it is an SNR problem that defines the limit of our system. Yet 

there lies the potential to improve the detection performance by using even smaller sized virtual 

channels or possibly even the native resolution of the 64×64 FPA. These will increase the SNR 

of a given anomaly compared to larger sized virtual channels. 
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Figure 4-21. Test of arbitrary anomaly detection using pre-determined thresholds. Each row corresponds to an 

anomaly of a particular intensity but different durations. Brighter anomalies are at the top, and longer duration 

anomalies are on the left.  
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Appendix 4-1: Improving the PR curve with a ground truth signal broadening technique 

 

We noticed that many of our average PR curves, such as in Fig A-1, had a surprisingly low 

precision rate, which gives the impression that the detection algorithm is not very effective. 

However the real data indicates otherwise, and so we looked closer at the detection results in 

comparison with the ground truth.  

 

 
Figure A-1. Average ROC and PR curves before the improvement.  

 

 

We found that the change detection scores always contained an ascending and descending slope 

when the anomaly is detected; on the other hand, the ground truth of the anomaly is more like a 

delta spike with very large slope, as shown in Fig. A-2. The difference between the real data and 

the ground truth leads to the low precision rate in the PR curve.  
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Figure A-2. The comparison between the real data and the ground truth. The blue line is the change detection result, 

and the red line indicates the ground truth anomaly event. 

Our approach to improve the PR curve is to attempt to match the change detection score data 

with the ground truth. We used a data broadening method to make the indication of the anomaly 

in the ground truth rise slower as seen in Fig. A-3. In essence, we have slowed down its “slew-

rate” so that it is more comparable to the real data  Compared with Fig. A-1, it is clear from Fig. 

A-4 that this broadening technique improves the PR results significantly.  This then permits us to 

calculate better the Fβ-scores for locating the optimal threshold. 

 
Figure A-3. The broadened ground truth that matches the detection data.  

 

 

 
Figure A-4. The ROC and PR curves after the improvement, where we see the precision raises to above 50%.  
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Section 5. Conclusion and future directions 
 

During this project we expanded on the utility and efficiency of the original short-wave infrared 

single-pixel compressive imaging system by converting that camera architecture into a high-

speed anomaly detection system.  This enhanced capability is an improvement as compared to 

performing the same task with a traditional infrared focal plane array. It is also an important 

demonstration in the capability of compressive optical systems as sensor platforms for machine 

vision applications. By operating directly on the measured coefficients, a great deal of time and 

computation is saved.  We successfully demonstrated the anomaly detection capability with a 

single sensor and further increased the speed and efficiency by moving to a 64×64 multi-pixel 

architecture. We also correspondingly designed a set of modulation patterns to be displayed on 

the DMD that allow the algorithms to be exploited across multiple length scales by enabling 

individual or joint operation of pixels in this task. 

 

While this project demonstrated promising results, there are still other areas that can be pursued 

for future research and development. We discuss several of these next. 

 

1. As mentioned in Section 4, we noticed that a secondary negative spike always follows the 

true signal spike that is associated with an anomaly. This secondary negative spike is 

always delayed by W data points, where W is the size of the sliding window. Therefore, a 

more sophisticated algorithm can use both the negativity and delay of the secondary spike 

to strengthen its ability to detect anomalies. Further, since most anomalies are brief, we 

can possibly use the set of detection spikes that occur when the anomaly disappears. 

 

2. We briefly studied the crosstalk between FPA detectors or virtual channels both 

simulations and laboratory experiments. Crosstalk becomes an important issue when an 

anomaly is on the edge of two or more detector elements or virtual channels. This cause 

the signal of one particular region to decrease as the energy is spread into other regions, 

and detection performance may suffer from this. By monitoring the size and timing of 

signal changes in the adjacent pixels of virtual channels, we can use the crosstalk 

information to boost our detection confidence and also more accurately localize the 

anomaly. Information from the measured PSF of the optical system should be able to help 

with this problem. 

 

3. Another area is to incorporate the Local-Global measuring and grooming technique into 

the proposed detection system. Recall that this is a two-step process: the first step is 

optical (see Eq (2-6)), and the second is computational (see Eq. (2-7)). As explained in 

Section 2, we use can obtain local measurements from the individual detectors in a FPA, 

and then directly groom (i.e., multiplex) them together into larger groups that correspond 

to global measurements in the compressive domain. This will permit us to compare the 

statistics of compressive domain data over different ROIs and larger areas. However, the 

theory presented in Section 2 does not take into account the real-world effect of the PSF 

function. That is, the optical crosstalk experienced by our FPA measurement system 

corrupts or blurs the local measurements obtained in Eq. (2-6). As a result, the global 

measurements that result from the grooming step of Eq. (2-7) propagate these errors. A 
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valuable avenue of future research is to incorporate the PSF function into the Local-

Global technique to determine its effect and, if possible, how to ameliorate it. 

 

4. There still remains a great deal of hardware expandability with this new short-wave 

infrared detection system. This is possible since the DMD is capable of steering the 

modulated light in two complementary left and right directions from the micromirror 

surface normal.  Throughout this project we employed our detection on only one of the 

two optical branches.  As such, our high-speed detection system can also be expanded 

into simultaneous detection and imaging by adding an FPA to this second branch.  

Another alternative is to add a spectrometer to the second branch allowing simultaneous 

spatial and spectral anomaly detection. Finally it is worth mentioning that the 

micromirrors are broadband optical modulators expanding their potential out beyond 10 

microns in wavelength with an appropriate window such as ZnSe on the DMD chip.  By 

adding a mid-wave infrared detector to the second optical branch, this system would be 

capable of performing dual-band high-speed anomaly detection across a large portion of 

the spectrum further increasing its capability. 

 

 

 

  

 

 


